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How should successive generations insure each other when the young
can default on previously promised transfers to the old? This paper
studies intergenerational insurance that maximizes the expected dis-
counted utility of all generations subject to participation constraints
for each generation. If complete insurance is unattainable, the opti-
mal intergenerational insurance is history dependent even when the
environment is stationary. The risk from a generational shock is spread
into the future with periodic “resetting.” If we interpret intergenera-
tional insurance in terms of debt, the fiscal reaction function is nonlin-
ear and the risk premium on debt is lower than the risk premium with
complete insurance.
I. Introduction
Countries face economic shocks that result in unequal exposure to risk
across generations. The financial crisis of 2008 and the COVID-19 pandemic
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are two recent and notable examples.1 Faced with such shocks, it is desir-
able to share risk across generations. However, full risk sharing is not sus-
tainable if it commits future generations to transfers they wouldnot wish to
make once they are born. The issue of the sustainability of intergenera-
tional insurance is becoming increasingly relevant in many advanced
economies as the relative standard of living of the younger generation
has worsened in recent decades.2 If this generational shift persists, future
generations may be less willing to contribute to insurance arrangements
than in the past. Therefore, a natural question to ask is how an optimal in-
tergenerational insurance arrangement should be structured when there
is limited enforcement of risk-sharing transfers.
Despite its policy relevance, the literature on intergenerational insur-

ance does not fully address this question. The normative approach in the
literature investigates the optimal design of intergenerational insurance
but assumes that transfers are mandatory, ignoring the issue of limited
enforcement. Meanwhile, the positive approach highlights the political
limits to intergenerational insurance while considering equilibrium allo-
cations that are supported by a particular voting mechanism but are not
necessarily Pareto optimal.
In this paper, we examine optimal intergenerational insurance when

subsequent generations can default on risk-sharing transfers promised
to previous generations. We model the limited enforcement of trans-
fers by assuming that transfers satisfy a participation constraint for each
generation. This can be interpreted as requiring that the insurance
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1 Glover et al. (2020) find that the Financial Crisis of 2008 had a negative impact on the
older generation, while the young benefited from the fall in asset prices. Glover et al.
(2023) find that younger workers have been affected to a greater extent by the response
to the COVID-19 pandemic because they disproportionately work in sectors that have seen
particularly adverse impacts, such as retail and hospitality.

2 Part A of the online appendix reports changes in the relative standard of living of the
young and the old for six Organisation for Economic Co-operation and Development
(OECD) countries using data from the Luxembourg Income Study Database.
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arrangement be supported by each generation if put to a vote. An ar-
rangement of risk-sharing transfers is sustainable if it satisfies the partici-
pation constraint of every generation. Optimal sustainable intergenera-
tional insurance is the risk-sharing transfers that would be chosen by a
benevolent social planner who maximizes the expected discounted util-
ity of all generations subject to the participation constraints.
The model is simple. At each date, a new generation is born and lives for

2periods.Eachgenerationcomprises a constantpopulationofhomogeneous
agents with the population size normalized to 1. Each agent receives an en-
dowment of a single, nonstorable consumption good when both young
and old. Endowments are stochastic. Each generation is affected by an idio-
syncratic shock (common to all agents within a generation) and an aggregate
growth shock. We adopt the approach of Alvarez and Jermann (2001) and
Krueger and Lustig (2010) and assume that preferences exhibit a constant
coefficient of relative risk aversion (for simplicity, we concentrate on the case
of logarithmic preferences) and that the idiosyncratic and growth shocks are
independent and identically distributed. In this setting, the underlying econ-
omy is stationary. There are only two frictions. First, risk may not be allocated
efficiently, even if the economy is dynamically efficient, because there is no
market in which the young can share risk with previous generations (see,
e.g., Diamond 1977). Second, the amount of risk that can be shared is lim-
ited because transfers between generations cannot be enforced. In particu-
lar, the old will not make a transfer to the young (since the old have no fu-
ture). Conversely, the young may make a transfer to the old. However, the
young will do so only if they receive promises for their old age that at least
match their expected lifetime utility from autarky and they anticipate that
these promises will be honored by the next generation.
It is well known (see, e.g., Aiyagari and Peled 1991) that if endowments

are such that the young wish to defer consumption to old age at a zero net
interest rate, then there are stationary transfers that improve upon autarky
(proposition 2). Under this condition, and assuming that the first-best
transfers cannot be sustained, there is a trade-off between efficiency and
providing incentives for the young to make transfers to the old. This
trade-off is resolved by linking the utility the young are promised for their
old age to the promise made to the young of the previous generation. The
resulting optimal sustainable intergenerational insurance arrangement is
history dependent, even though the economic environment is stationary.
To understand why there is history dependence, suppose that the first-

best transfers would violate the participation constraint of the young in
some endowment state. To ensure that the current transfer made by the
young is voluntary, either the current transfer is reduced below the first-
best level or the promised transfer for their old age is increased. Both
changes would be costly: reducing the current transfer reduces the
amount of risk shared today, and increasing the transfers promised to
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the current young for their old age tightens the participation constraints
of the next generation and reduces the risk that can be shared tomorrow.
Therefore, an optimal trade-off exists between reducing the current trans-
fer and increasing the future promise. This trade-off depends on both the
current endowment and the current promise. For example, consider some
current endowment and a current promise such that the future promise
for the same endowment state is higher than the current promise. If the
same endowment state is repeated in the subsequent period, then the
young in that period are called upon to make a larger transfer, which in
turn requires a higher promise of future utility to them as well. Thus, the
transfer depends not only on the current endowment but also on the past
promise and, hence, the history of endowment shocks.
The optimal sustainable intergenerational insurance is found by solving

a functional equation derived from the planner’s maximization problem.
The solution is characterized by policy functions for the consumption of
the young (or, equivalently, the transfer made to the old) and the future
promised utility for their old age in each endowment state. Both policy
functions depend on the current endowment and the current promise.
For a given endowment, the consumption of the young is weakly decreas-
ing in the current promise, while the future promise is weakly increasing in
the current promise (lemmas 2 and 3).When the current endowment state
is repeated, the policy function for the future promise has a unique fixed
point that (ignoring a boundary condition) equals the utility at the first-
best outcome. Therefore, the future promise is higher than the current
promise when it is less than the corresponding fixed point and lower than
the current promise when the current promise is greater than the fixed
point. When the promised utility is sufficiently low, there is some endow-
ment state in which the participation constraint of the young does not
bind. In that case, the future promise is reset to the largest value that max-
imizes the planner’s payoff.
When a participation constraint binds, the risk affecting one genera-

tion is spread to future generations. The resetting property shows, how-
ever, that the effect of a shock does not last forever. Moreover, it implies
strong convergence to a unique invariant distribution (proposition 5).
The invariant distribution exhibits history dependence, and consump-
tion fluctuates across states and over time, even in the long run. This
stands in stark contrast to the situation under either full enforcement
of transfers or no risk. In the former case, the promised utility is constant
over time, except possibly in the initial period (proposition 3). In the lat-
ter case, the promised utility is constant in the long run, although there
may be an initial phase during which the promised utility falls (proposi-
tion 4). In both cases, the allocation is efficient in the long run. Thus,
both risk and limited enforcement are necessary for history dependence
and inefficiency in the long run.



3504 journal of political economy
Transfers to the old can be interpreted in terms of debt. Suppose that
the planner issues 1-period state-contingent bonds that trade at the state
price determined by the corresponding intertemporal marginal rate of
substitution and balances the budget by taxing or subsidizing the young.
Given these bond prices and taxes, the young buy the correct quantity of
state-contingent bonds to finance their optimal old-age consumption. It
is then possible to use the model to study the dynamics of debt and ad-
dress the issues of debt valuation and sustainability, following the model-
based approach introduced by Bohn (1995, 1998).
When preferences are logarithmic, it is natural to measure debt relative

to the endowment of the young. With debt measured in this way, there is a
maximal debt limit and a debt policy function that determines the next-
period debt as a function of the current debt and the next-period endow-
ment share. This function is constant when debt is low but is nonlinear
and strictly increasing when debt is above a critical threshold (corollary 1).
The debt policy function and the history of endowments determine the
dynamics of debt. Debt rises or falls depending on the evolution of en-
dowments but eventually resets to a minimum level, creating cycles of
debt. The difference between debt and the revenue generated from issu-
ing state-contingent bonds defines the fiscal reaction function that mea-
sures how the tax rate depends on debt. Absent enforcement frictions,
the fiscal reaction function is linearly increasing in debt. However, with
enforcement frictions, the fiscal reaction function is linear when debt
is low but is nonlinear when debt is high. In particular, when debt is below
the threshold, the amount of debt issued is independent of the current
debt, while the price of state-contingent bonds decreases linearly in debt.
Thus, bond revenue falls with debt, and the tax rate rises linearly. Above
the threshold, two factors affect the fiscal reaction function. The price
of state-contingent bonds decreases with debt, while bond issuance in-
creases with debt according to the nonlinear debt policy function. The
combined effect of these two factors results in a nonlinear fiscal reaction
function.
The model also provides implications for asset pricing and the depen-

dence of asset prices on debt (proposition 6). Since the idiosyncratic and
growth shocks are independent and identically distributed, the implied
conditional yields are the sumof a growth-adjusted component and a con-
stant given by the logarithm of the average growth rate. The price of state-
contingent bonds decreases with debt, which implies that the conditional
yields, including the risk-free rate, increase with debt. The discount factor
of the planner and the average growth rate determine the yield on the
long bond. However, the long-short spread may be positive or negative.
The dynamics of debt imply that the long-short spread is positive when
debt is low and the young are poor because, in this case, debt will rise, lead-
ing to higher expected future yields. Likewise, the long-short spread is
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negative when debt is high and the young are rich because debt will fall,
leading to lower expected future yields.
The variability of yields, and their decomposition into growth-adjusted

and growth-dependent components, is also significant for debt valuation.
There is a linear decomposition of the risk premiumondebt into a growth-
adjusted component and a component that depends on the aggregate risk
(proposition 7). The returnonbonds increases with the endowment of the
young next period, as does the marginal utility of consumption of the old
next period. Thus, the return on bonds is positively correlated with the sto-
chastic discount factor for a givendebt, resulting in a riskpremiumondebt
lower than the risk premium on aggregate risk. In the absence of enforce-
ment frictions, this gap is zero.When there are enforcement frictions, debt
is a hedge against the endowment risk, and this reduces the risk premium
on debt. Consequently, for a fixed plan of future primary surpluses, higher
debt can be sustained compared to a case where the future surpluses are
discounted using the risk premium on aggregate risk. This gap between
the risk premiums on aggregate risk and debt offers a potential resolution
to the “debt valuation puzzle” posed by Jiang et al. (2021), who find that
the value of US debt exceeds the present value of future primary surpluses
when discounted by the risk premium on aggregate risk.3 Moreover, the
risk premiumondebt varies with debt. In particular, it rises or falls depend-
ing on whether the expected return on debt increases with debt at a faster
or slower rate than the risk-free interest rate.
In an example with two endowment states, we provide a closed-form so-

lution for the bound on the variability of the implied yields and show that
the invariant distribution of debt is a transformation of a geometric distri-
bution (proposition 8). Numerically, the solution can be found using a
shooting algorithm without the need to solve a functional equation. In this
example, the risk premium increases with debt, leading to a reduction in
the gap between the risk premium on aggregate risk and the risk premium
on debt.
A. Literature
The paper builds on the literature on risk sharing in models with over-
lapping generations. In most of this literature, transfers are mandatory,
and consideration is restricted to stationary transfers (see, e.g., Shiller
1999; Rangel and Zeckhauser 2001), in contrast to the voluntary and
history-dependent transfers considered here. Our result on history depen-
dence is foreshadowed in a mean-variance setting by Gordon and Varian
(1988), who establish that any time-consistent optimal intergenerational
3 For an overview of debt sustainability and the debt valuation puzzle, see, e.g., Reis
(2022), Willems and Zettelmeyer (2022), and Jiang et al. (2023).
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risk-sharing agreement is nonstationary. Ball and Mankiw (2007) analyze
risk sharing when generations can trade contingent claims before they are
born. They find that idiosyncratic shocks are spread equally across gener-
ations and consumption follows a randomwalk, as inHall (1978). Such an
allocation is not sustainable since it violates the participation constraint of
some future generation almost surely. In contrast, we show that although
the effects of a shock can be prolonged, they are unevenly spread across
future generations, and resetting ensures that they cannot last forever.
By interpreting the transfer to the old as debt, we complement the ex-

tensive literature on debt sustainability and the fiscal reaction function
that began with Bohn (1995, 1998). Our result on the nonlinearity of
the fiscal reaction function echoes the discussion of “fiscal fatigue,”
which argues that the primary fiscal balance responds sluggishly to rising
debt when debt is high because of the adverse implications of debt, such
as the risk of default (see, e.g., Mendoza and Ostry 2008; Ghosh et al.
2013). Despite the absence of default in our model, enforcement con-
straints generate nonlinearity in the fiscal reaction function. Bhandari
et al. (2017) also study optimal fiscal policy and debt dynamics but in a
model with infinitely lived and heterogeneous agents where markets
are incomplete because of constraints on tax policy. Brunnermeier,
Merkel, and Sannikov (2024) provide a result similar to ours that the risk
premium on debt is lower than the risk premium on aggregate risk. In
theirmodel, infinitely lived agentsmust retain a fixed proportion of their
idiosyncratic risk. Government debt serves as a hedge against idiosyn-
cratic risk, and, consequently, debt becomes a negative-beta asset. The
authors emphasize that debt can command a bubble premium, which
may add to the safety of government debt. In contrast to Brunnermeier,
Merkel, and Sannikov (2024), our model has no bubble component, and
the extent of risk sharing is determined endogenously, depending on the
history of endowment shocks.
Methodologically, the paper relates to the literature on risk sharing

and limited enforcement frictions with infinitely lived agents. Two polar
cases have been examined: one with two infinitely lived agents (see, e.g.,
Thomas andWorrall 1988; Chari andKehoe1990; Kocherlakota 1996) and
the other with a continuum of infinitely lived agents (see, e.g., Thomas
and Worrall 2007; Krueger and Perri 2011; Broer 2013). The overlapping-
generations model considered here has a continuum of agents, but only
two agents are alive at any point in time. Themodel is not nested in either
of the two infinitely lived agent models but fills an essential gap in the lit-
erature by analyzing optimal intergenerational insurance with limited en-
forcement frictions.Here, we establish strong convergence to the invariant
distribution, whereas Krueger and Perri (2011) and Broer (2013) consider
the solution only at an invariant distribution and Thomas and Worrall
(2007) discuss convergence only in a particular case.
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B. Plan of Paper
Section II sets out the model. Section III considers two benchmarks: one
with full enforcement of transfers from the young to the old and the
other without risk. Section IV characterizes optimal sustainable inter-
generational insurance, and section V establishes convergence to an in-
variant distribution on a countable ergodic set. Section VI provides an
interpretation of the optimum in terms of debt and derives the fiscal re-
action function. Section VII discusses the implications for asset pricing,
and section VIII considers the valuation of debt. Section IX presents an
example with two endowment states. Section X concludes. The appen-
dix contains the proofs of the main results.4
II. The Model
Time is discrete and indexed by t 5 0,  1,  2, : : : ,  ∞. The model consists
of a pure exchange economy with an overlapping-generations demo-
graphic structure. At each time t, a new generation is born and lives for
2 periods. The generation born at date t has a population of Nt homoge-
neous agents. We assume that there is no population growth and normal-
ize Nt 5 1, so it is as if each generation has a single agent.5 Each agent is
young in the first period of life and old in the second. The economy starts
at t 5 0 with an initial old agent and an initial young agent. Since time is
infinite, the initial old agent is the only agent who lives for just 1 period.
At each time t, agents receive an endowment of a perishable consump-

tion good. Endowments are finite and strictly positive. The endowment
of the young and the old at time t are e yt and eot with an aggregate endow-
ment of et 5 e

y
t 1 eot . The endowment share of the young is st ≔ e

y
t =et (the

endowment share of the old is 1 2 st), and the gross growth rate of the
aggregate endowment is gt ≔ et=et21. There is both idiosyncratic (share
of the generation’s endowment) risk and aggregate (growth) risk. The
sequences of random variables (st: t ≥ 0) and (gt: t ≥ 0) take values in fi-
nite sets I and J , respectively, where jI j 5 I ≥ 2 and jJ j 5 J ≥ 1. The
pair rt ≔ ðst , gtÞ taking values in P ⊆ I � J follows a finite-state, aperi-
odic, time-homogeneous Markov process, with the probability of transit-
ing from rt to state rt11 next period given by -ðrt , rt11Þ.
4 Additional proofs and further details can be found in the online appendix.
5 The assumption that agents of the same generation are homogeneous makes it possi-

ble to focus on intergenerational risk sharing. However, it does mean that we ignore ques-
tions about inequality within generations and its evolution over time. Although we main-
tain the assumption of a constant population, the qualitative properties of the model are
unchanged if there is a constant rate of population growth. Part D of the online appendix
examines the impact of a demographic shock and shows how the effect of this shock can be
amplified and prolonged.
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Denote the history of endowment shares and growth rates up to and
including time t by st ≔ ðs0, s1, : : : , stÞ ∈ I t and gt ≔ ðg0, g1, : : : , gtÞ ∈ J t ,
and let rt ≔ ðr0, r1, : : : , rtÞ ∈ P t . The distribution of r0 is given by the func-
tion v(r0), and the probability of reaching the history rt is -ðrtÞ 5
-ðrt21Þ-ðrt21, rtÞ. Hence, the aggregate endowment at time t is the ran-
dom variable et 5

Qt
k50gk with g0 5 e0.

There is complete information. Endowments depend only on the cur-
rent state, whereas consumption can, in principle, depend on the history
of states. Denote the per-period consumption of the young by C(rt) and
the corresponding consumption share by cðrtÞ 5 CðrtÞ=et . There is no
technology to store the endowment from one period to the next, and,
hence, the aggregate endowment is consumed eachperiod. Consequently,
the per-period consumption of the old is et 2 CðrtÞ and the correspond-
ing consumption share is 1 2 cðrtÞ. In autarky, agents consume only their
own endowments; that is, the consumption share of the young is st, and the
consumption share of the old is 1 2 st for all t and ðrt21,  rtÞ.
Each generation is born after the uncertainty of its birth period is re-

solved; that is, when the growth rate of the economy and the endowment
shares of the young and the old are known. Therefore, after birth, a gen-
eration faces uncertainty only in old age, and there is no insurance mar-
ket in which the young can insure against their endowment risk. Let
fCg 5 fCðrtÞ : t ≥ 0, rt ∈ P tg denote a history-contingent consumption
stream of the young. Then, the lifetime utility gain over autarky for a gen-
eration born after the history rt is

U Cf g; rtð Þ ≔ uðCðrtÞÞ 2 uðe yt Þ
1 bort11

-ðrt , rt11Þ uðet11 2 Cðrt , rt11ÞÞ 2 uðeot11Þð Þ,
where u(⋅) is the per-period utility function, common to the young and
the old, and b ∈ ð0, 1� is the generational discount factor. We assume that
the per-period utility function is logarithmic, uð⋅Þ 5 logð⋅Þ. Hence, the
preferences of an agent can be expressed in terms of consumption and en-
dowment shares. In particular, since e yt 5 st et andCðrtÞ 5 cðrtÞet , it follows
that uðCðrtÞÞ 2 uðeyt Þ 5 logðcðrtÞÞ 2 logðstÞ andU ðfCg; rtÞ 5 U ðfcg; rtÞ,
where

U cf g; rtð Þ ≔ logðcðrtÞÞ 2 logðstÞ
1 bort11

-ðrt , rt11Þ logð1 2 cðrt , rt11ÞÞ 2 logð1 2 st11Þð Þ:
We call the history-contingent stream of consumption shares fcg 5
fcðrtÞ : t ≥ 0, rt ∈ P tg an intergenerational insurance rule since it determines
how consumption is allocated between the young and the old for any
history rt. Since storage is not possible and because the young are born af-
ter uncertainty is resolved, the only means of achieving intergenerational
insurance is through transfers between the young and the old. We assume
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that there is a benevolent social planner who chooses an intergenerational
insurance rule of history-contingent transfers to maximize a discounted
sumof the expected utilities of all generations. Let the planner’s expected
discounted utility gain over autarky, conditional on the history rt, be

V cf g; rtð Þ ≔ b

d
logð1 2 cðrtÞÞ 2 logð1 2 stÞð Þ 1 Et o∞

j5td
t2jU cf g; rjð Þ� �

,

where Et is the expectation over future histories at time t. The planner’s
discount factor is d ∈ ð0, 1Þ, and the weight on the utility of the initial old
is b/d.6

To maximize the discounted sum of expected lifetime utilities, the
planner must respect the constraint that transfers are voluntary.7 That
is, the planner must respect the constraint that neither the old nor
the young would be better off in autarky than by adhering to the speci-
fied transfers for any history of shocks. For the old, this means they will
not make a positive transfer to the young because there is no future ben-
efit to offset such a transfer. Hence, the consumption of the young can-
not exceed their endowment, or, equivalently,

cðrtÞ ≤ st for all t ≥ 0 and rt ∈ P t: (1)

The analogous participation constraint for the young requires that the
conditional transfers promised for their old age sufficiently compensate
them for the transfer they made when young, so that choosing to partic-
ipate does not leave them worse off than choosing to renege on the trans-
fer today and receiving the corresponding autarkic lifetime utility. That is,

U cf g; rtð Þ ≥ 0 for all t ≥ 0 and rt ∈ P t: (2)

For expositional simplicity, let the initial state r0 be given.8 Hence, at t 5
0, the planner chooses {c } to maximize

V cf g; r0ð Þ, (3)

subject to the constraint set Λ ≔ ffcg ∣ð1Þ and ð2Þg. Since utility is strictly
concave, and the constraints in (2) are linear in utility, the planner’s
objective in equation (3) is concave and the constraint set Λ is convex
and compact.
6 The assumption of geometric discounting for the planner is common (see, e.g., Farhi
and Werning 2007). Using a weight of b/d for the initial old preserves the same relative
weights on the young and the old, including the initial old, in every period.

7 The assumption that the transfer is voluntary can be interpreted as requiring that the
intergenerational insurance rule would be supported by each generation if put to a vote.

8 The analysis is easily generalized to any given initial distribution v(r0).



3510 journal of political economy
Definition 1. An intergenerational insurance rule is sustainable if
fcg ∈ Λ.
Definition 2. An intergenerational insurance rule is optimal if it is

sustainable and it maximizes the objective in equation (3) subject to the
constraint that the initial old receive a utility from their consumption share
of at least �q0:

logð1 2 cðr0ÞÞ ≥ �q0: (4)

We introduce constraint (4) with an exogenous initial target utility
of �q0 because it is useful when considering the evolution of the optimal
sustainable intergenerational insurance rule in section IV.9 However, we
will return to the case where the planner chooses the initial �q0.
Since U ðfCg; rtÞ 5 U ðfcg; rtÞ and utility is logarithmic, the objectives

and constraints are equivalent whether consumption is expressed in lev-
els or shares. That is, the economy with stochastic growth is equivalent
to an economy with a constant endowment and consumption expressed
as shares of the aggregate endowment. The growth rate of the consump-
tion levels is simply the growth rate of the consumption shares multi-
plied by the growth rate of the aggregate endowment.
Remark 1. For preferences that exhibit constant relative risk aver-

sion, this equivalence property is well known to hold in models of idio-
syncratic and aggregate risk with infinitely lived agents (see, e.g., Alvarez
and Jermann 2001; Krueger and Lustig 2010). An analogous extension
can be shown to hold here by defining growth-adjusted transition prob-
abilities and discount factors to satisfy the following:

-̂ðrt , rt11Þ ≔
-ðrt , rt11Þðgt11Þ12a

ort11
-ðrt , rt11Þðgt11Þ12a

and

b̂ðrtÞ
b

5
d̂ðrtÞ
d

≔ ort11
-ðrt , rt11Þðgt11Þ12a,

where a is the coefficient of relative risk aversion.
In what follows, we assume that the shocks to endowment shares and

growth rates are independent and are identically and independently dis-
tributed (i.i.d.).
Assumption 1. (i) The state r is i.i.d. with the probability -ðrÞ.

(ii) The endowment share and the growth rate are independent; that
is, -ðrÞ 5 pðsÞςðgÞ, where p(s) and ς(g) are the marginal distributions
of the endowment shares and the growth rates.
9 The initial target utility may also depend on the initial state. Varying �q0 traces out the
Pareto frontiers that trade the utility of the old off against the planner’s valuation of the
expected discounted utility of all future generations.
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By part i of assumption 1, the economy is stationary. We make this as-
sumption to emphasize that the history dependence we derive below fol-
lows from the participation constraints rather than any feature of the
economic environment itself.10 Since the terms U ðfcg; rtÞ and V ðfcg; rtÞ
depend on the growth rates gt and gt11 only via the transition function
-ðrt , rt11Þ, it follows that under assumption 1 the consumption shares in
any optimal sustainable intergenerational insurance rule depend only on
the history of endowment shares st.
Proposition 1. Under assumption 1, the consumption shares in any

optimal sustainable intergenerational insurance rule depend only on
the history st and are independent of the history of growth shocks gt.
A similar result is well known from models with infinitely lived agents

(see, again, Alvarez and Jermann 2001; Krueger and Lustig 2010).11

Preliminaries. — Since there are I ≥ 2 states for the endowment share,
order states such that sðiÞ < sði 1 1Þ for i 5 1, : : : , I 2 1, so that a higher
state corresponds to a larger endowment share for the young. For con-
venience, we will refer to states 1,  2, : : : , I corresponding to shares
sð1Þ, sð2Þ : : : , sðI Þ and to simplify notation will sometimes express vari-
ables as a function of i rather than s.
Under assumption 1, the existence of a nonautarkic sustainable allo-

cation can be addressed by considering small stationary transfers that de-
pend only on the current endowment state. Denote the intertemporal
marginal rate of substitution between the consumption share when
young in state s and the consumption share when old in state r next
period, evaluated at autarky, by m̂ðs, r Þ ≔ bs=ð1 2 r Þ and let q̂ðs, r Þ ≔
pðr Þm̂ðs, r Þ. The terms m̂ðs, rÞ and q̂ðs, r Þ correspond to the stochastic
discount factor and the state prices in an equilibrium model. Denote
the I � I matrix of terms q̂ðs, rÞ by Q̂ . A nonautarkic sustainable alloca-
tion exhausting the aggregate endowment and satisfying the participa-
tion constraints in (1) and (2) exists whenever the Perron root of Q̂ is
greater than 1 (see, e.g., Aiyagari and Peled 1991; Chattopadhyay and
Gottardi 1999). In this case, there exists a vector of strictly positive sta-
tionary transfers that improves the lifetime utility of the young in each
state. Since the endowment states are i.i.d., the matrix Q̂ has rank 1,
and the Perron root is its trace. We assume that the trace of Q̂ is larger
than the harmonic mean of the growth factors, �g ≔ ðogςðgÞg21Þ21.
Assumption 2. os∈I q̂ðs, sÞ > �g.
10 The assumption of i.i.d. shocks is standard in overlapping-generations models where
a generation may cover 20–30 years.

11 Under assumption 1 and preferences exhibiting constant relative risk aversion, the dis-
count factors defined in remark 1 satisfy b̂=b 5 d̂=d 5 ogςðgÞg12a. If a ≠ 1, then the plan-
ner’s objective is finite provided dogςðgÞg12a < 1.
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If there is just one state with the young receiving a share s of the aggre-
gate endowment and no growth, then assumption 2 reduces to the stan-
dard Samuelson condition: s > 1=ð1 1 bÞ. In this case, it is well known
that there are Pareto-improving transfers from the young to the old. As-
sumption 2 is the generalization to the stochastic case and a natural as-
sumption given that our focus is on transfers to the old.12 Given assump-
tion 2, it follows that the constraint set Λ is nonempty.
Proposition 2. Under assumption 2, there exists a nonautarkic and

stationary sustainable intergenerational insurance rule.
Furthermore, we assume:
Assumption 3. sð1Þ ≤ d=ðb 1 dÞ.
Assumption 3 provides a sufficient condition for the strong convergence

result of sectionV. Since d < 1, assumption 3 implies that sð1Þ < 1=ð1 1 bÞ;
that is, in the absence of growth, the statewise Samuelson condition does
not hold in every state, showing that our results do not depend on this
property. In the terminology of Gale (1973), the economy can be viewed
as a mix of Samuelson and classic cases.
III. Two Benchmarks
Before turning to the characterization of the optimal sustainable inter-
generational insurance, it is helpful to consider two benchmark cases
that illustrate the inefficiencies generated by the presence of limited en-
forcement and uncertainty. The first benchmark ignores the participa-
tion constraints of the young but not the participation constraints of
the old. The second benchmark considers an economy without risk but
requires that the planner respects the participation constraints of both the
young and the old.
A. First Best
Suppose that the planner ignores the participation constraints of the
young, and let Λ* ≔ ffcg ∣ð1Þg denote the set of transfers without the
constraints in (2).13
12 A sufficient condition for assumption 2 to be satisfied is that the Frobenius lower
bound, given by the minimum row sum of Q̂ , is greater than �g. A row sum greater than
�g implies that, in autarky, the young would wish to save for their old age in each endow-
ment state even if the net interest rate were 0.

13 Hereafter, the asterisk designates the first-best outcome. Note that the first best could
be defined by assuming that the planner ignores the participation constraints of both the
young and the old. The reason for presenting the first best as we do is to show that this
allocation is stationary. Hence, any history dependence of the optimal sustainable inter-
generational insurance rule derives from the imposition of the participation constraints
of the young.
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Definition 3. An intergenerational insurance rule fcg ∈ Λ* is first
best if it maximizes the objective function (3) subject to constraint (4).
It is easy to verify that at the first-best optimum

c*ðstÞ 5 min
d

b 1 d
, st

� �
 for all t > 0 and st ∈ St: (5)

Condition (5) shows that the consumption shares of the young are kept
constant unless doing so would involve a transfer from the old to the young,
inwhich case the consumption share is the autarky value.14 That is, at thefirst
best, the consumption share is independent of the history st21 and depends
only on the current endowment share st when the nonnegativity constraint
on the transfer binds. Under assumption 3, there is always one state inwhich
the participation constraint of the old holds with equality.
It can be seen from condition (5) that, for states in which transfers are

positive, the first-best consumption share of the young is independent of
s. It is decreasing in b since a higher b puts more weight on the utility of
the old who receive the transfer, and it is increasing in d since a higher d
puts more weight on the utility of the young who make the transfer.
Let qminðsÞ ≔ logð1 2 sÞ be the utility of the old at autarky and

q* ≔ logðb=ðb 1 dÞÞ be the utility of the old when the consumption share
of the young is d=ðb 1 dÞ. Then, q*ðsÞ ≔ maxfqminðsÞ, q*g is the utility of
the old at the first-best solution when the endowment share of the young is
s. Since s0 is the endowment share of the young at the initial date, it follows
from definition 2 that constraint (4) does not bind when �q0 ≤ q*ðs0Þ. In
this case, the first-best consumption at t 5 0 is c*(s0), determined by con-
dition (5) as in every other time t > 0. On the other hand, for �q0 > q*ðs0Þ,
constraint (4) binds and c*ðs0Þ 5 12 expð�q0Þ. In this case, the initial trans-
fer to the old is correspondingly higher than implied by condition (5).
Denote the per-period payoff to the planner with the first-best allocation

by v*ðsÞ 5 logðc*ðsÞÞ 1 ðb=dÞ logð1 2 c*ðsÞÞ and the expected discounted
payoff to the planner by V *(s0, q) when the initial endowment share is s0
and the initial utility of the old is q. The maximum utility the old can
get occurs if they consume all of the endowment, so that qmax 5
logð1Þ 5 0. Let Ωðs0Þ 5 ½qminðs0Þ, 0� be the set of possible utilities for the
old at the initial state, �v* ≔ ospðsÞv*ðsÞ be the planner’s expected per-
period payoff at the first-best solution and �V * ≔ �v*=ð1 2 dÞ be the corre-
sponding continuation payoff. The first-best outcome is summarized in
the following proposition.15
14 Condition (5) is a special case of the familiar Arrow-Borch condition for optimal risk
sharingmodified to account for the constraint that transfers are only from the young to the
old.

15 The proof of proposition 3 is omitted because it follows from standard arguments.
Nonetheless, the properties of the function V *(s0, q) are mirrored in prop. 4 and lemma 1,
given below, which do respect the participation constraints of the young.
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Proposition 3. (i) The consumption share c*ðstÞ is stationary and
satisfies condition (5) for t > 0. For t 5 0, c*ðs0Þ satisfies condition (5)
for q ≤ q*ðs0Þ and c*ðs0Þ 5 1 2 expðqÞ for q > q*ðs0Þ. (ii) The value func-
tion V *ðs0, ⋅Þ :Ωðs0Þ→R has V *ðs0, qÞ 5 v*ðs0Þ 1 d�V * for q ≤ q*ðs0Þ
and V *ðs0, qÞ 5 ðb=dÞq 1 logð1 2 expðqÞÞ 1 d�V * for q > q*ðs0Þ, where
the derivative V *

q ðs0, q*ðs0ÞÞ 5 minf0, ðb=dÞ 2 ðð1 2 s0Þ=s0Þg with limq→ 0

V *
q ðs0, qÞ 5 2∞.
The value function V *(s0, q) is decreasing and concave in q (strictly

decreasing and strictly concave in q for q > q*ðs0Þ). The function “ex-
tends to the left” when the endowment share s0 is higher.16 If q*ðs0Þ >
qminðs0Þ (or, equivalently, s0 > d=ðb 1 dÞ), then V *(s0, q) is independent
of q for q ≤ q*ðs0Þ. Hence, in the absence of constraint (4), the planner
would choose qðs0Þ 5 q*ðs0Þ because this gives the highest utility to the
initial old while maximizing the payoff to the planner. In this case, the
allocation given by condition (5) holds in every period. In contrast,
when �q0 > q*ðs0Þ, the consumption share of the young is lower than im-
plied by condition (5), but only in the initial period. There is immediate
convergence to the stationary first-best distribution in 1 period.
Since the payoff to the planner depends on both s and q, the station-

ary distribution is a pair (s, q*(s)), the endowment share and the corre-
sponding utility promised to the old. We note for future reference that
this stationary distribution has I values, one for each endowment state,
with the probability of each pair given by p(s).
B. Deterministic Economy
We now consider a deterministic economy with a constant growth rate g

and endowment share s. Unlike the previous benchmark, we assume that
the planner respects the participation constraint of both the young and
the old. Let û : 5 logðsÞ 1 b logð1 2 sÞ be the lifetime endowment util-
ity. Assumption 2, together with the strict concavity of the utility func-
tion, implies that there is a unique cmin < s that is the lowest stationary
consumption share of the young that satisfies the participation con-
straint with equality. The corresponding maximum utility of the old is
qmax ≔ logð1 2 cminÞ.17 Analogously to condition (5), the first-best con-
sumption share is c* 5 d=ðb 1 dÞ and the corresponding utility of the
old is q* ≔ logðb=ðb 1 dÞÞ. If d is above a critical value, then c* > cmin

(or, equivalently, q* < qmax) and the first-best consumption share is sus-
tainable. Otherwise, the first-best consumption share is not sustainable.
16 That is, for s > r where qminðsÞ < qminðr Þ, V *ðs, qÞ 5 V *ðr , qÞ for q ∈ Ωðr Þ.
17 Themaximumutility of the old can be found by solving logð1 2 expðqmaxÞÞ 1 bqmax 5 û.

Equivalently, the minimum consumption is found by solving logðcminÞ 1 b logð1 2 cminÞ 5 û.
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Denote the consumption share of the young at time t by ct and the corre-
sponding utility of the old by qt 5 logð1 2 ctÞ. Consider the maximization
problem in (3) with the participation constraints of the young given by
logðctÞ 1 b logð1 2 ct11Þ ≥ û. For �q0 ≤ q*, constraint (4) does not bind
and it is optimal to set ct 5 maxfc*, cming (or, equivalently, qt 5minfq*,
qmaxg) for all t ≥ 0. On the other hand, consider the case where q* < qmax

and �q0 > q*. Then, at t 5 0, c0must satisfy logð1 2 c0Þ ≥ �q0, which requires
that c0 < c*. Clearly, it is desirable to set c0 such that logð1 2 c0Þ 5 �q0 and
c1 5 c*. However, setting c1 5 c* may violate the participation constraint
of the young. In this case, c1 has to be chosen to satisfy logðc0Þ1
b logð1 2 c1Þ 5 û, which implies that c1 < c*. Repeating this argument for
t > 1 shows that given ct, the consumption share of the young at time
t 1 1 satisfies either logðctÞ 1 b logð1 2 ct11Þ 5 û or ct11 5 c* if logðctÞ1
b logð1 2 c*Þ ≥ û. Intuitively, if the consumption share of the young is
low (or, equivalently, the utility of the old is large), then the planner
would like to raise the consumption share of the young to c* (or, equiva-
lently, reduce q to q*) as fast as possible to improve welfare. However, if
the consumption share of the next-period young is raised toomuch, then
the lifetime utility of the current young falls, and their participation con-
straint is violated. That is, in the presence of limited enforcement, the
consumption share of the young has to be raised gradually. It is useful
to express this rule in terms of a policy function g :Ω→Ω for the prom-
ised utility next period:

g ðqÞ ≔
q* for q ∈ ½qmin, q

c�,
1

b
û 2 log 1 2 expðqÞð Þð Þ for q ∈ ðqc, qmax�,

8<
: (6)

where Ω≔ ½qmin, qmax�,qmin 5 logð1 2 sÞ andqc ≔ logð1 2 expðû 2 bq*ÞÞ.
It follows from the strict concavity of the utility function that qc > q*. The
function g(q) is increasing and convex in q, as illustrated in figure 1. The
dynamic evolution of qt is straightforwardly derived from g(q): for qt ∈
½qmin, qc�,qt11 5 q* for all t; forqt ∈ ðqc, qmax�,qt11 declinesmonotonically.
Since qc > q*, the process forqt converges toq*, attaining its long-run value
in finite time.
Denote the per-period payoff to the planner with the first-best alloca-

tion in the absence of uncertainty by v* ≔ logðd=ðb 1 dÞÞ 1 ðb=dÞq* and
the expected discounted payoff to the planner for q ∈ Ω by V(q). The
optimal solution for the deterministic case with sustainable q* is summa-
rized in the following proposition.
Proposition 4. (i) If q ∈ ½qmin, q*�, then the consumption share ct 5

d=ðb 1 dÞ for t ≥ 0. (ii) If q ∈ ðq*, qmax�, then qt11 satisfies equation (6).
There exists a finite T such that qt is monotonically decreasing for t < T
and qt 5 q* for t ≥ T . Likewise, ct is monotonically increasing for t < T
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and ct 5 c* for t ≥ T . (iii) The value function V :Ω→R is equal to
V ðqÞ 5 v*=ð1 2 dÞ for q ∈ ½qmin, q*� and is strictly decreasing and strictly
concave for q ∈ ðq*, qmax� with limq→ qmax

VqðqÞ 5 2∞.
The optimal solution is either stationary or converges monotonically

to a stationary point within finite time, with cT 5 c* for T large enough.
Hence, the long-run distribution of q is degenerate, and for the case
where c* > cmin, it has a single mass point at {q*}.
In the following sections, we show that when the first-best allocation vi-

olates a participation constraint of the young and there is endowment
risk, the optimal sustainable intergenerational insurance is history depen-
dent even in the long run, and the ergodic set of utilities has more than I
values. The benchmarks highlight the necessity of both limited enforce-
ment of transfers and risk for this result.
IV. Optimal Sustainable Intergenerational Insurance
In this section, we characterize the optimal intergenerational insurance
rule under uncertainty when the planner respects the participation con-
straints of both the young and the old. Recall that the shocks to growth
FIG. 1.—Deterministic policy function. The solid line represents the deterministic pol-
icy function g :Ω→Ω that determines the future promised utility as a function of the cur-
rent promise. The case illustrated has qmax > q*. For any initial q ∈ ½qmin, qmaxÞ, qt converges
to q* in finite time.
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rates and endowment shares are i.i.d. (assumption 1) and that the optimal
sustainable consumption shares dependonly on the history of endowment
share st (proposition 1). Proposition 3 describes the solutionwhen thefirst-
best outcome is sustainable. Therefore, in this section, we assume that the
first-best allocation violates the participation constraint of the young in at
least one state. Since the lifetime endowment utility of an agent is increas-
ing in s, we assume that
Assumption 4. logðc*ðI ÞÞ 1 borpðr Þ logð1 2 c*ðr ÞÞ < logðsðI ÞÞ1

borpðr Þ logð1 2 r Þ.
We reformulate the optimization problem described in definition 2

recursively using the utility q promised to the old as a state variable.
Let qr denote the state-contingent utility promised to the current young
for their old age when the endowment share of the young next period is
r. Then, the planner’s optimization problem is

V ðs, qÞ 5 max
c, qrð Þr∈If g∈Φðs,qÞ

b

d
logð1 2 cÞ 1 logðcÞ 1 dorpðr ÞV ðr , qrÞ, (P1)

where Φ(s, q) is the constraint set given by the following inequalities:

logð1 2 cÞ ≥ q, (7)

c ≤ s, (8)

qr ≤ qmaxðr Þ for each r ∈ I , (9)

qr ≥ qminðr Þ for each r ∈ I , (10)

logðcÞ 1 borpðr Þqr ≥ logðsÞ 1 borpðr Þ logð1 2 rÞ: (11)

The recursive formulation is similar to the promised-utility approach used
in models with infinitely lived agents (see, e.g., Green 1987; Spear and
Srivastava 1987; Thomas and Worrall 1988; Atkeson and Lucas 1992). At
each period, the planner chooses the consumption share of the young, c,
and the state-contingent promise of utility, qr. The state variable q embodies
information about the history of shocks. Constraint (7) is the promise-
keeping constraint, which requires the current old to receive at least what
they were promised previously. It is analogous to constraint (4), which
specifies a target utility for the initial old, but it now specifies a target utility
in every period. Constraint (8) is the participation constraint of the old,
which stipulates that the old do not transfer to the young. Constraints (9)
and (10) require that the promise is feasible: qr ∈ Ωðr Þ ≔ ½qminðr Þ,
qmaxðrÞ�. Finally, constraint (11) requires that the consumption share of
the young and the promises made to them for their old age at least match
the expected lifetime utility that they would receive in autarky.
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It is easy to check that the constraint set Φ(s, q) is convex and com-
pact. Denote the state vector by x ≔ ðs, qÞ and let f(x) and gr(x) for
r ∈ I be the optimal consumption share of the young and the state-
contingent utility promised to the old next period. The compactness
of the constraint set guarantees the existence of the optimal policies,
and the strict concavity of the utility function guarantees uniqueness.
The optimal allocation is solved recursively. Starting at date t 5 0 with
a given state s0 and given q0 ∈ Ωðs0Þ, solve the optimization problem
(P1) to obtain the policy functions f(s0, q0) and gr(s0, q0) for r ∈ I . For
the second period, solve the maximization problem again using the en-
dowment share realized at date t 5 1, say r̂ , together with the utility
promise from the first period, gr̂ðs0, q0Þ, in equation (7). The process
is then repeated for subsequent periods.
The function V(s, q) cannot be found by standard contraction map-

ping arguments starting from an arbitrary value function because the
value function associated with the autarkic allocation also satisfies the func-
tional equation of problem (P1). However, a similar iterative approach
can be used to find the value function, starting from the first-best value
functions V *(s, q) derived in proposition 3. Following the arguments of
Thomas and Worrall (1994), the limit of this iterative mapping is the op-
timal value function V(s, q). Proposition 3 established that the first-best
value function is nonincreasing, differentiable, and concave in q, and
the limit value function inherits these properties.
Lemma 1. (i) The value function V ðs, ⋅Þ :ΩðsÞ→R is nonincreasing,

concave, and continuously differentiable in q, with qminðsÞ < qmaxðsÞ.
(ii) For each s ∈ I , there exists an q0ðsÞ ∈ ½qminðsÞ, q*ðsÞ� such that V(s, q)
is strictly decreasing and strictly concave for q > q0ðsÞ. If q*ðsÞ > qminðsÞ,
then q0ðsÞ > qminðsÞ and for at least one such state q0ðsÞ < q*ðsÞ. For
q ∈ ½qminðsÞ, q0ðsÞ�, Vqðs, qÞ 5 0. If q*ðsÞ 5 qminðsÞ, then q0ðsÞ 5 q*ðsÞ
and Vqðs, q0ðsÞÞ ≤ ðb=dÞ 2 ðð1 2 sÞ=sÞ ≤ 0. In either case, the limit,
limq→ qmaxðsÞVqðs, qÞ 5 2ðb=dÞlmaxðsÞ, where lmaxðsÞ ∈ R1 [ f∞g. (iii) The
upper bounds satisfy qmaxðsðiÞÞ < qmaxðsði 2 1ÞÞ < 0. Similarly, q0ðsðiÞÞ ≤
q0ðsði 2 1ÞÞ with strict inequality for at least one i 5 2, : : : , I .
The strict concavity of the objective function and the convexity of the

constraint set guarantee the concavity of V(s, q) in q, with q0ðsÞ 5
supfq ∣ Vqðs, qÞ 5 0g if Vqðs, qminðsÞÞ 5 0 and q0ðsÞ 5 qminðsÞ otherwise.
Since the old will not transfer to the young voluntarily, qminðsÞ 5
logð1 2 sÞ; that is, the autarkic utility of the old. The upper endpoints
qmax(s) are determined by the system of equations logð1 2 expðqmaxðsÞÞÞ1
borpðr Þqmaxðr Þ 5 logðsÞ 1 borpðrÞ logð1 2 rÞ. It can be checked that
there is a unique nontrivial solution with qmax(s) decreasing with s and
qminðsÞ < qmaxðsÞ < 0. Analogous to qmin(s) and qmax(s), q0(s) is also de-
creasing in s. Differentiability of V(s, q) with respect to q follows because
the constraint set satisfies a linear independence constraint qualification
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when q ∈ ½qminðsÞ, qmaxðsÞÞ. The left-hand derivative of V(s, q) with respect
to q, evaluated at qmax(s), is finite if qmax(s) is part of the ergodic set and is
infinite otherwise.
Remark 2. Recall that �q0 is the exogenous target utility given in con-

straint (4). Given the definition of q0(s), the planner chooses the initial
utility of the old such that q0 5 maxfq0ðs0Þ, �q0g. If the planner is not sub-
ject to constraint (4) and can freely choose the initial utility, then the plan-
ner setsq0 5 q0ðs0Þ. Note that unlike �q0, q0(s) is endogenous and depends
on all of the model’s primitives.
Remark 3. The optimal sustainable intergenerational insurance is not

renegotiation proof because, in the case of default, it would be possible to
promise a utility of q0(r), instead of qmin(r), without diminishing the plan-
ner’s payoff. A renegotiation-proof outcome can be derived by replacing
constraint (11) with logðcÞ 1 borpðr Þqr ≥ logðsÞ 1 borpðr Þq0ðrÞ. Since
q0(r) is endogenous and appears in the constraint, a fixed-point argument
similar to that used by Thomas and Worrall (1994) is required to find the
solution. Although imposing this tighter constraint restricts risk sharing,
the structure of the optimization problem is not affected. Therefore, we
expect that the qualitative properties of the optimal solution are substan-
tially unchanged.
Optimal Policy Functions.—We now turn to the properties of the policy

functions f(x) and gr(x). Given the differentiability of the value function,
the first-order conditions for the programming problem (P1) are

f ðxÞ 5 min
dð1 1 mðxÞÞ

bð1 1 lðxÞÞ 1 dð1 1 mðxÞÞ , s
� �

and (12)

Vqðr , gr ðxÞÞ 5 2
b

d
mðxÞ 2 yrðxÞ 1 hrðxÞð Þ for each r ∈ I , (13)

where ðb=dÞlðxÞ is the multiplier corresponding to the promise-keeping
constraint (7), bpðr ÞyrðxÞ are themultipliers corresponding to the upper
bound on the promised utility (9), bpðr ÞhrðxÞ are the multipliers corre-
sponding to the lower bound on the promised utility (10), and m(x) is
themultiplier corresponding to the participation constraints of the young
(11). Given the concavity of the programming problem, conditions (12)
and (13) are both necessary and sufficient. There is also an envelope
condition:

VqðxÞ 5 2
b

d
lðxÞ: (14)

Taken together, equations (13) and (14) imply the following updating
property:

lðx 0Þ 5 mðxÞ 2 yrðxÞ 1 hrðxÞ, (15)
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where x 0 5 ðr , grðxÞÞ is the next-period state variable. To interpret equa-
tion (15), suppose, for simplicity, that the boundary constraints on the
promised utility do not bind. In this case, hrðxÞ 5 yrðxÞ 5 0, and the up-
dating property reduces to lðx 0Þ 5 mðxÞ. From equation (13), it follows
that dð1 1 mðxÞÞ is the relative weight placed on the utility of the young
and bð1 1 lðxÞÞ is the relative weight placed on the utility of the old.
Therefore, in this case, the updating property shows that the relative
weight placed on the utility of the old corresponds to the tightness of
the participation constraint they faced when they were young.
The following two lemmas describe the properties of the policy

functions.18

Lemma 2. (i) The policy function grðs, ⋅Þ :ΩðsÞ→½q0ðr Þ, qmaxðr Þ� is
continuous and increasing in q and strictly increasing for grðs, qÞ ∈
ðq0ðrÞ, qmaxðr ÞÞ. (ii) For each r ∈ I and q ∈ ðqminðsði 2 1ÞÞ, qmaxðsðiÞÞÞ,
grðsðiÞ, qÞ ≥ gr ðsði 2 1Þ, qÞ with strict inequality for at least one
i 5 2, : : : , I . For each s ∈ I , grðiÞðs, qÞ ≤ gr ði21Þðs, qÞ with strict inequality
for at least one i 5 2, : : : , I . (iii) For endowment state 1, there is a critical
value qc > q0ð1Þ such that grð1, qÞ 5 q0ðr Þ for q ∈ ½q0ð1Þ, qc� and r ∈ I .
(iv) For each s ∈ I , there is a unique fixed point q fðsÞ 5 minfq*ðsÞ,
qmaxðsÞg of the mapping gs(s, q) with gsðs, qÞ > q for q < q fðsÞ and
gsðs, qÞ < q for q > q fðsÞ. For endowment state I, q fðI Þ > q0ðI Þ.
Lemma 3. (i) Thepolicy function f ðs, ⋅Þ :ΩðsÞ → ð0, s�, where f ðs, qÞ 5

1 2 expðwÞ for q ≥ q0ðsÞ and f ðs, qÞ 5 1 2 expðq0ðsÞÞ for q < q0ðsÞ.
(ii) c0ðsÞ ≔ f ðs, q0ðsÞÞ, where c0ðsðiÞÞ ≥ c0ðsði 2 1ÞÞ with strict inequality
for at least one i 5 2, : : : , I . (iii) At the fixed point q f(s), f ðs, q fðsÞÞ ≤ c*ðsÞ
with equality forq fðsÞ < qmaxðsÞ.
The main properties of lemmas 2 and 3 follow straightforwardly from

the objective to share risk subject to the participation constraints. The
policy function gr(s, q) is increasing in q (lemma 2i), whereas f(s, q) is
decreasing in q (lemma 3i). A higher promise to the current old means
a lower consumption share for the current young, and, for endowment
states in which the participation constraint binds, this requires a higher
future promise of utility for their old age as compensation. The con-
sumption share of the young does not directly depend on s and depends
only indirectly on s when q 5 q0ðsÞ or q 5 qmaxðsÞ (lemma 3ii), whereas
gr(s, q) is increasing in s and decreasing in r (lemma 2ii). The policy
function gr(s, q) is increasing in s because a higher endowment share
of the young today is associated with a larger risk-sharing transfer, which,
if the participation constraint is binding, has to be compensated by a
higher promise for tomorrow. Likewise, the future promise is decreasing
18 To avoid the clumsy terminology of nondecreasing or weakly increasing, we describe a
function as increasing if it is weakly increasing and highlight cases where a function is strictly
increasing.
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in r because a higher endowment share of the young tomorrow is asso-
ciated with a higher consumption share when the participation con-
straint binds and, hence, a lower consumption share of the old tomor-
row. Since the optimum is nontrivial and differs from the first best,
there is at least one strict inequality in the relations of lemma 2ii, so that
grðsðI Þ, qÞ > grðsð1Þ, qÞ and gr ðI Þðs, qÞ < gr ð1Þðs, qÞ.
Lemma 2iii shows that there is a range of q above q0(1) such that the

participation constraint of the young does not bind and, hence,
grð1, qÞ 5 q0ðr Þ in this range. This is analogous to the deterministic case
discussed in section III where the policy function has an initial flat section
(see fig. 1). More generally, when the participation constraint of the
young does not bind, it follows from equation (14) that grðxÞ 5 q0ðr Þ
and x 0 5 ðr , q0ðr ÞÞ. In this case, we say that the promise is reset. The prom-
ise is reset to the value that gives the most to the current old while max-
imizing the payoff to the planner. Lemma 2iii shows that resetting, in par-
ticular, occurs in state 1 for any q ∈ ½q0ð1Þ, qc�.
Lemmas 2iv and 3iii describe what happens when the same endowment

share repeats in successive periods. Suppose, for simplicity, that hsðxÞ 5
ysðxÞ 5 0 and f ðxÞ > s. From equations (13) and (14), mðs, q fðsÞÞ 5
lðs, qfðsÞÞ, whereq f(s) is thefixedpoint of gs(s,q).Using equation (12), this
implies that the consumption share is first best and, hence, q fðsÞ 5q*ðsÞ.
Furthermore, gsðs, qÞ > q for q < q fðsÞ and gsðs, qÞ < q for q >q fðsÞ. That
is, when the same endowment share repeats, the promise falls if the previ-
ous promise was above the first best and rises if the previous promise was
below the first best. It follows that the policy function gsðs, qÞ > q cuts the
457 line once from above. To understand this, consider some q > q fðsÞ
and suppose, to the contrary, that gsðs, qÞ ≥ q. In this case, equations (13)
and (14) imply that mðs, q fðsÞÞ > lðs, q fðsÞÞ, which in turn implies q <
q*ðsÞ 5 q fðsÞ from equation (12), a contradiction. A similar argument
shows that gsðs, qÞ > q for q < q fðsÞ.19
The implications of lemmas 2 and 3 can be illustrated by considering

a particular sample path of the consumption share, generated for a given
history of endowment shares sT 5 ðs0, s1, : : :, sT Þ. The sample path of the
consumption share is constructed iteratively from the policy functions
f(s, q) and gs(s, q) starting with x 0 5 ðs0, q0Þ as follows: ct 5 f tðst , x 0Þ ≔
f ðst , g tðst , x 0ÞÞ, where g tðst , x 0Þ≔ gstðst21, g t21ðst21, x 0ÞÞ and g 0ðs0, x 0Þ5 q0.
Figure 2 depicts such a sample path in a three-state example and il-

lustrates three important properties.20 First, the optimal sustainable
19 The argument can be extended to the case where the nonnegativity and upper-bound
constraints bind, and a complete proof of lemma 2 is provided in the appendix.

20 The example has b 5 d 5 expð21=75Þ (corresponding to an interest rate of 1=75),
sð1Þ 5 0:5, sð2Þ 5 0:625, and sð3Þ 5 0:8125, with probabilities pð1Þ 5 0:5, pð2Þ 5 0:25,
and pð3Þ 5 0:25.



3522 journal of political economy
consumption share fluctuates above and below the first-best level of
c*ðsÞ 5 0:5.21 Second, the path is history dependent. That is, the con-
sumption share varies both with the current endowment state and the his-
tory of shocks. For example, the endowment share st 5 sð3Þ occurs at
t 5 8 and t 5 13, but the consumption share differs at the two dates.
When state 3 occurs, the participation constraint of the young binds,
and, hence, a higher future utility must be promised to ensure that they
are willing to share more of their current endowment. Subsequent reali-
zations of state 3 exacerbate the situation because the young of the next
generation must also deliver on past promises, meaning that the con-
sumption share of the young falls when state 3 repeats. This property is
evident in figure 2 where ct falls when state 3 repeats (t 5 2,  3 and
t 5 11,  12,  13). This implies that the consumption share is not necessar-
ily monotonic in the endowment. For example, the consumption share at
t 5 4, when the endowment share is s4 5 sð2Þ, is lower than the consump-
tion share at t 5 9, when the endowment share is s9 5 sð1Þ < sð2Þ. This
FIG. 2.—Sample path of the young consumption share. The illustration is for a case
where I 5 3 and b 5 d (where the first-best consumption share is 1=2). The shade of
the dots indicates the state st: light gray for st 5 sð1Þ, medium gray for st 5 sð2Þ, and dark
gray for st 5 sð3Þ. The case illustrated has s0 5 sð1Þ and q0 5 q0ð1Þ 5 2 logð2Þ.
21 By lemma 1ii, q0ðsÞ ≤ q*ðsÞ. By assumption 3, q*ð1Þ 5 qminð1Þ. Hence, q0ð1Þ 5 q*ð1Þ.
Since g1(s, q) is increasing in q, the promise is above the first-best level (or, equivalently, the
consumption share is below the first-best level) in state 1. From lemma 2iii, q0ðI Þ < q*ðI Þ
and therefore, for low values of q, the promise is below the first-best level (or, equivalently,
the consumption share is above the first-best level) in state I.
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nonmonotonicity occurs because the promise made to the old for t 5 4 is
higher than that made for t 5 9. Third, there are points in time when the
consumption share returns to the same value in the same state. For exam-
ple, this happens at t 5 7, which has the same state (state 1) and same
consumption share as at t 5 0. In this case, there is resetting. The path
of the consumption share is the same following resetting if the same se-
quence of endowment shares occurs. Note that the definition of the reset-
ting points is not unique. For example, there is resetting also at t 5 1,
 8,  10, when state 3 occurs after state 1. Before resetting occurs, the effect
of a shock persists. However, once resetting occurs, the history of shocks
is forgotten, and the subsequent sample path is identical when the same
sequence of states occurs. That is, the sample paths between resettings are
probabilistically identical. This property is used in the next section to es-
tablish convergence to a unique invariant distribution.
V. Convergence to the Invariant Distribution
This section considers the long-run distribution of the pair x 5 ðs, qÞ. It
shows that there is a unique and countable ergodic set E with cardinality
jE j > I and strong convergence to the corresponding invariant distribu-
tion. Let Ω 5 [r∈IΩðr Þ and X 5 I � Ω. The future evolution of x is a
Markov chain defined by the transition function

Pðx, A � BÞ ≔ Prfxt11 ∈ A � B ∣ xt 5 xg
5 or∈Apðr Þ1BgrðxÞ,

where A⊆ I , B ⊆Ω, and 1BgrðxÞ 5 1 if grðxÞ ∈ B and zero otherwise. The
chain starts from x 0 5 ðs0, q0Þ with an initial promise q0 5 maxfq0ðs0Þ,
�q0g.
The monotonicity and resetting properties of lemma 2 imply that,

starting from any xt, a sequence of k recurrences of state 1 (where the en-
dowment share is s(1)) leads to xt1k 5 ð1, q0ð1ÞÞ for a finite k. This is be-
cause g1ð1, qÞ < q, so that repetition of state 1 leads to a decrease in q,
and, since g1ð1, qÞ 5 q0ð1Þ for some q > q0ð1Þ, q falls to q0(1) in finite
time. In this case, we say that x is reset to (1, q0(1)) at time t 1 k. Since
the probability of state 1 is pð1Þ > 0, the probability of a history of k con-
secutive repetitions of state 1 is pð1Þk > 0. An immediate consequence is
that condition M of Stokey and Lucas (1989, 348) is satisfied, and,
hence, there is strong convergence in the uniformmetric to a unique in-
variant probability measure f(X) for X ∈ X .22
22 ConditionM is satisfied because there is a k ≥ 1 and an ε > 0 such that the k-step tran-
sition function Pkðx, fð1, q0ð1ÞÞgÞ > ε for any x ∈ X . In this case, (1, q0(1)) is an atom of the
Markov chain. Açikgöz (2018), Foss et al. (2018), and Zhu (2020) use similar arguments to
establish strong convergence in the Aiyagari precautionary-savings model with heteroge-
neous agents.
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Since there is a positive probability that x is reset to (1, q0(1)) in finite
time, the Markov chain for x is regenerative, and (1, q0(1)) is a regeneration
point (see, e.g., Foss et al. 2018). For simplicity, suppose first that the pro-
cess starts at x 0 5 ð1, q0ð1ÞÞ. Recall that g tðst , x 0Þ 5 gstðst21, g t21ðst21, x 0ÞÞ,
where g 0ð1, x 0Þ 5 q0ð1Þ. Let rx ≔ minfk ≥ 1 ∣ðs, g kððsk21, sÞ, x 0ÞÞ 5 xg de-
note the first time that the process is equal to x starting from x0. Then, rx0
is the first regeneration time, the first time after the initial period at which
x0 reoccurs. Any sample path of promises can be divided into different
blocks, with each block starting at a regeneration time. This can be seen
in figure 2, where the first regeneration time occurs at t 5 7. Although
the blocks between regeneration points are not identical, the strong Mar-
kov property ensures that they are i.i.d. At each regeneration time, past
shocks are forgotten, and the future evolution of x is probabilistically iden-
tical. The regeneration times are also i.i.d., and the expected regeneration
time is u ≔ E0½rx0 �, the same for any block. Moreover, f is finite since all
positive probability paths must have a sequence of endowment states lead-
ing to x 0 5 ð1, q0ð1ÞÞ as described above.
Now consider a starting point x 0 5 ði, q0ðiÞÞ for some initial state

s0 5 sðiÞ. Given that gið1, q0ð1ÞÞ 5 q0ðiÞ by lemma2iii, a positive-probability
path that leads back to x0 is constructed by a sequence of consecutive rep-
etitions of state 1, as outlined above, followedby state i. Since the transition
from state 1 to state i occurs with positive probability, (i, q0(i)) is a regen-
eration point, and the blocks between these regeneration points are also
probabilistically identical. As discussed in remark 2, in the absence of con-
straint (4), the planner sets q0 5 q0ðiÞ, and the process starts in the ergo-
dic set. However, if constraint (4) must be respected and �q0 > q0ðiÞ, then
x0 5 ði, �q0Þ, and the process may start outside of the ergodic set. In this
case, there is still a positive probability path back to a resetting point
(i, q0(i)). The only difference is that the first block in the regenerative pro-
cess is different from subsequent blocks (which all start from (i, q0(i)).
However, this does not change the convergence properties of the process.
LetRx ≔ Prðrx < ∞Þ be the probability of attaining the pair x 5 ðs, qÞ in

finite time starting from x0. If Rx > 0, then x is said to be accessible from x0.
Since x 0 5 ði, q0ðiÞÞhas apositiveprobabilitymass and the set of endowment
states I is finite and time is discrete, the associated set E ≔fx ∣ Rx > 0g
is countable. Moreover, the set E is an equivalence class because every
x ∈ E is accessible from x0, and there is a path from every accessible x back
to x0. Therefore, E is an absorbing set (i.e., Pðx, EÞ 5 1 for all x ∈ E), and
since no proper subset of E has this property, it is ergodic (see, e.g., Stokey
and Lucas 1989, chap. 11). Let ux denote the expected return time to x
where ux 0

; u. With u finite, it follows that Rx 5 1 and each ux is finite;
that is, each x ∈ E is positive recurrent.
Since the ergodic set E is countable, standard results on the conver-

gence of positive-recurrent Markov chains apply. To state these results,
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let P denote the transition matrix with elements Pðx, x 0Þ 5 pðr Þ1qr
grðxÞ,

where x 5 ðs, qÞ and x 0 5 ðr , grðxÞÞ. Similarly, let Pkðx, x 0Þ be the ele-
ments of the corresponding k-period transition matrix.
Proposition 5. (i) There is pointwise convergence to a unique and

nondegenerate invariant distribution f 5 fP , where, for each x ∈ E ,
fðxÞ 5 limk →∞Pkð⋅, xÞ 5 u21

x . (ii) The invariant distribution is the limit
of the iteration ft11ðx 0Þ 5 ox∈EPðx, x 0ÞftðxÞ for any given f0ðxÞ. (iii) The
cardinality jE j > I .
Parts i and ii of proposition 5 are standard and show convergence to a

unique invariant distribution where the probability of each x ∈ E is the in-
verse of the expected return time. The invariant distribution can be com-
puted iteratively, given knowledge of the policy functions. In particular, for
s0 5 sðiÞ, the invariant distribution can be computed starting from an ini-
tial distributionf0ðxÞ 5 1 if x 5 ði, q0ðiÞÞ andf0ðxÞ 5 0 otherwise.23 Part iii
shows that the cardinality of the ergodic set is greater than I. That is, at the
invariant distribution, there aremultiple promised utilities associated with
particular states. Hence, the history of endowment share affects the con-
sumption allocation even in the long run. This result stands in contrast
to the two benchmarks considered in section III. If transfers are enforced
or if there is no risk, then convergence is to an ergodic set with a cardinality
equal to the cardinality of the set of endowment states.
Since lemma 2 shows that gr(s, q) is increasing in s and q, grðI , q*ðI ÞÞ is

the largest promise that canbe reached in state r startingwith x0 5 ði, q0ðiÞÞ.
If grðI , q*ðI ÞÞ < qmaxðr Þ, then any x 5 ðr , qÞwithq ∈ ðgrðI , q*ðI ÞÞ,qmaxðr ÞÞ
is not accessible from x0. Therefore, such an x is transitory and is not part
of the ergodic set. In section IX, we compute the ergodic set and the in-
variant distribution in examples with grðI , q*ðI ÞÞ < qmaxðr Þ.24
Remark 4. The convergence result and all the results of section IV

apply when preferences exhibit constant relative risk aversion. They also
hold for any concave utility function if the aggregate endowment is con-
stant. If the aggregate endowment is state-dependent, but there is no
growth, then lemma 2, lemma 3, and proposition 5 remain valid, except
that the policy functions are not necessarily monotonic in the endow-
ment state (see Lancia, Russo, and Worrall 2022 for details).
VI. Debt
In this section, we reinterpret the optimal transfer to the old as debt.
Suppose that the planner issues 1-period state-contingent bonds that
23 The convergence results hold for any initial distribution f0(A), even if A⊈ E , since
eventually, once regeneration occurs, all subsequent promises belong to the ergodic set.

24 The ergodic set and invariant distribution are difficult to characterize. In some cases,
however, the invariant distribution is a transformation of a geometric distribution with a
denumerable ergodic set; that is, jE j 5 ℵ0.



3526 journal of political economy
trade at the corresponding state prices. The planner uses the revenue
generated by bond sales to fund the transfer to the old, balancing the
budget by taxing or subsidizing the young. Given bond prices and taxes,
the young buy the correct quantity of state-contingent bonds to finance
their optimal old-age consumption. With this interpretation, the dynam-
ics of debt and the fiscal reaction function can be examined.
A. The Debt Policy Function
It is convenient to measure debt relative to the endowment share of the
current young. Then, the optimal debt d(x) satisfies q 5 logð1 2 s 1
sdðxÞÞ, so d(x) is increasing in q.25 Let d0ðsÞ ≔ dðs, q0ðsÞÞ ≥ 0 denote
the minimum debt at the optimal solution when the endowment share
of the young is s. Debt d ∈ D 5 ½dmin, dmax�, where the minimum debt
dmin ≔ minr d0ðr Þ and the maximum debt dmax is determined as the non-
trivial solution of logð1 2 dmaxÞ 1 borpðr Þðlogð1 2 r 1 rdmaxÞ 2 logð12
rÞÞ 5 0. We refer to dmax as the debt limit and dmax 2 d as the fiscal space
(see, e.g., Ghosh et al. 2013).26 It follows straightforwardly that dmax < 1,
analogously to the result of lemma 1 that qmaxðsÞ < 0. The debt policy func-
tion br :D→D determines the optimal debt next period when the current
debt is d and the endowment share of the young next period is r. The
properties of the debt policy functions are summarized in the following
corollary to lemmas 2 and 3.
Corollary 1. (i) The debt policy function br :D→D is continuous

in d. For d ≤ dc, brðdÞ 5 d0ðr Þ, and for d > dc, br(d) is strictly increasing
in d. The threshold d c satisfies dc 5 1 2 expð2borpðrÞðlogð1 2 r 1
rd0ðrÞÞ 2 logð1 2 r ÞÞÞ ∈ ðdmin, dmaxÞ with dmin 5 0 and dmax < 1. (ii) For
d ∈ D, brðiÞðdÞ ≥ br ði21ÞðdÞ with strict inequality for at least one i 5
2, : : : , I . (iii) For each r ∈ I , there is a unique fixed point d f(r) of the
mapping br(d) where d fðr Þ 5 minfd*ðr Þ, dmaxg and d*ðr Þ 5 1 2 c*ðr Þ=r
is the first-best debt. For state I, d fðrðI ÞÞ > dc.
Corollary 1 reveals the benefits of measuring debt relative to the en-

dowment share of the young. First, the debt policy functions depend
on the current debt d but are independent of the current endowment
share s. Second, there is a common threshold d c, below which the debt
policy function is flat and above which it is strictly increasing. For
d ≤ dc, the debt policy function brðdÞ 5 d0ðr Þ. Lemmas 2 and 3 show
25 For brevity, in what follows, we often refer to d(x) simply as outstanding debt without
the caveat that it is measured relative to the endowment share of the young.

26 The debt limit is different from the maximum sustainable debt (see, e.g., Collard,
Habib, and Rochet 2015). The maximal sustainable debt focuses on the limit that external
investors are willing to lend to a government, taking into account the probability of default.
Typically, it is calculated using a fixed rule for government taxes and expenditure and a
constant interest rate.
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why the debt policy function is independent of s. When the participation
constraint of the young binds—that is, when constraints (7) and (11)
hold as equalities—the policy function for the promised utility gr(s, q)
is an increasing function of logðsÞ 2 logð1 2 expðqÞÞ. With expðqÞ 5
1 2 s 1 sd, logðsÞ 2 logð1 2 expðqÞÞ 5 2logð1 2 dÞ and gr(s, q) is an
increasing function of d. Hence, the debt policy function depends on
the current debt and endowment state next period.27

Part i of corollary 1 shows that the threshold d c is determined by set-
ting brðdÞ 5 d0ðr Þ for each r. By assumption 3, dmin 5 0 and by assump-
tion 4, dc < d*ðI Þ. Part ii shows that br(d), and consequently, rbr(d), are
increasing in r. Since the consumption share of the old decreases with
r, the transfer to the old, rbr(d), is positively correlated with their mar-
ginal utility of consumption. This positive correlation occurs because
debt provides partial insurance. Note that the consumption share of
the old decreases with r for a given debt d, while it increases with d for
a fixed r. Therefore, in comparing two endowment states, the consump-
tion share of the old may be higher when the young have a higher en-
dowment share if the debt is sufficiently high. Part iii follows directly
from lemma 2iv and the fixed point of the mapping br(d) corresponds
to the first-best debt.
B. The Dynamics of Debt
The dynamics of debt are derived from the debt policy functions de-
scribed in corollary 1 and the history of endowment shares. Figure 3A
plots the debt policy functions corresponding to the three-state example
illustrated in figure 2. For d ≤ dc, the debt policy function is indepen-
dent of the current debt and depends only on the endowment share
of the young next period. In particular, d0ð1Þ 5 d*ð1Þ and d0ð2Þ 5
d*ð2Þ, so that the consumption share is first best in states 1 and 2, whereas
in state 3, d0ð3Þ < d*ð3Þ because the corresponding participation con-
straint binds, limiting the transfer from the young. For d > dc, debt falls
when the endowment share of the young next period is r(1) or r(2). If,
for example, there are enough consecutive occurrences of the endow-
ment state 1, then debt falls to 0 . Since such sequences occur with pos-
itive probability, debt is reset to 0 periodically. If, on the other hand, the
endowment share of the young next period is r(3), then the debt rises
for d < d*ð3Þ but falls for d > d*ð3Þ. Thus, any debt d > d*ð3Þ is transi-
tory and cannot occur in the long run.28 In summary, the current debt
27 For constant relative risk-aversion preferences with a coefficient of risk aversion
greater than 1, the same property applies with a different normalization of debt that de-
pends on the coefficient of risk aversion.

28 In general, if d*ðI Þ < dmax, then any d ∈ ½d*ðI Þ, dmaxÞ is transitory.



3528 journal of political economy
encapsulates the history of endowment shares, and debt will rise or fall
depending on the endowment share of the young next period.
C. Fiscal Reaction Function
The fiscal reaction function shows how the tax rate depends on debt.
Since the promised utility and debt are monotonically related, we abuse
notation and rewrite the state space as x 5 ðs, dÞ. With logarithmic pref-
erences, the intertemporal marginal rate of substitution is mðx, x 0Þ 5
bsð1 2 dÞ=ð1 2 r ð1 2 br ðdÞÞÞ, where x 5 ðs, dÞ is the current state and
x 0 5 ðr , brðdÞÞ is the next-period state. Since the endowment shares are
i.i.d., the transition probability pðx, x 0Þ 5 pðr Þ, and, given debt d, the
current young can be thought as buying rbr(d) bonds contingent on a
next-period endowment share of r at the state price of qðx, x 0Þ 5
pðr Þmðx, x 0Þ. This generates a bond revenue for the planner, measured
relative to the endowment share of the young, of

BRðdÞ ≔ 1

s

� �
or∈Iqðx, x 0ÞrbrðdÞ 5 bor∈IpðrÞ

1 2 d

1 2 r ð1 2 br ðdÞÞ
� �

rbrðdÞ:

Note that BR(d) is independent of s. The planner finances the current
debt d by a combination of taxes (or subsidies) on the young and bond
revenue BR(d). Hence, the budget constraint of the planner is
FIG. 3.—Debt dynamics (A) and bond-revenue function (B). The illustration is for the
case I 5 3, corresponding to the example in figure 2. A, The debt policy functions
br :D→D for r 5 1, 2, 3. The light-gray line represents b1(d), the medium-gray line repre-
sents b2(d), and the dark-gray line represents b3(d). The level d*(3) is the largest sustainable
debt, and dmin 5 d*ð1Þ 5 0 is the lowest sustainable debt within the ergodic set. B, The bond-
revenue function BR :D→D. The fiscal reaction function is the difference d 2 BRðdÞ. For
d < d bal, the primary fiscal balance is in deficit, and for d > d bal, it is in surplus.
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tðdÞ 5 d 2 BRðdÞ, (16)

where t(d) is the tax rate on the young, measured as a share of their en-
dowment. We refer to t(d) as the fiscal reaction function and st(d) as the
primary fiscal balance. A positive value of st(d) corresponds to a primary
fiscal surplus, whereas a negative value of st(d) corresponds to a primary
fiscal deficit.
Figure 3B plots the outstanding debt d and the bond revenue BR(d)

with the fiscal reaction function t(d) given by the difference between
the two lines. The properties of BR(d) are complex because br(d) is in-
creasing in d, whereas the state price qððs, dÞ, ðr , brðdÞÞÞ is decreasing
in both d and br. By proposition 2, there are transfers next-period for
any debt d < dmax, and, hence, BR(0) is strictly positive. Moreover, since
br(d) is constant for d ≤ dc, BR(d) decreases linearly in this range. Hence,
the fiscal reaction function t(d) increases linearly in d for d ≤ dc. There is
an intersection point dbal where the bond revenue is equal to the current
debt, tðdbalÞ 5 0. For d < d bal, bond revenue exceeds the current debt,
and the planner subsidizes the young; that is, there is a primary fiscal
deficit. For d > dbal, bond revenue is insufficient to cover the current
debt, and the planner taxes the young; that is, there is a primary fiscal
surplus. For d > dc , a rise in d—that is, a reduction in fiscal space—leads
to more bond issuance, but the price of bonds decreases. Thus, the net
effect of a change in d on bond revenue is generally ambiguous. For the
example illustrated in figure 3B, the fiscal reaction function t(d) is in-
creasing in d, initially at a lower rate for debt above the threshold level
and then at a higher rate when debt is sufficiently large.
The situation depicted in figure 3 contrasts with the two benchmarks

discussed in section III. At the first best, the debt policy function is
brðdÞ 5 d*ðr Þ, independent of d. Hence, the debt policy functions in fig-
ure 3A are horizontal lines with fixed points at d*(r). There are no dy-
namics of debt except in the initial period, although debt varies with
the endowment share. Ignoring the nonnegativity constraint on trans-
fers, the first-best bond revenue function is linearly decreasing in debt,
resulting in a fiscal reaction function that is linearly increasing.29 In
the deterministic case, the debt policy function is a transformation of
the policy function in figure 1 with a critical debt dc 5 ðexpðqcÞ2
ð1 2 sÞÞ=s. If the initial debt is above d c, debt falls, and, once it reaches
or falls below d c, the debt next period equals the first-best level d*.
The dynamics of debt are transitory, with debt reaching the fixed point
d* in finite time. Along the transition path, debt falls, and the price of
29 It can be shown that BR*ðdÞ 5 ða 2 1Þð1 2 dÞ, where a 5 ð1 2 dÞ 1 ðb 1 dÞEs s and
Es s is the expected endowment share. Hence, the fiscal reaction function is t*ðdÞ 5
ð1 2 aÞ 1 ad. Since Es s > d=ðb 1 dÞ, a > 1.
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debt rises. These two offsetting effects mean that it is possible that bond
revenue rises or falls during the transition.
The two benchmarks show that enforcement frictions lead to the non-

linearity of the fiscal reaction function. By showing how this arises within
an optimizing framework, the paper contributes to the literature that ex-
amines and provides evidence of this nonlinearity (see, e.g., Mendoza
and Ostry 2008; Ghosh et al. 2013).
VII. Asset-Pricing Implications
In this section, we examine the asset-pricing implications of the model.30

In an overlapping-generations model, the growth-adjusted stochastic dis-
count factor is given by the intertemporal marginal rate of substitution
mðx, x 0Þ ≔ bucð1 2 cðx 0ÞÞ=ucðcðxÞÞ, where x is the current state, x 0 is the
state next period, uc(c(x)) is the marginal utility of the current young,
and ucð1 2 cðx 0ÞÞ is their marginal utility when old. This stochastic dis-
count factor can be decomposed into two components:

mðx, x 0Þ 5 d
ucðcðx 0ÞÞ
ucðcðxÞÞ

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

mAðx, x 0Þ

b

d

ucð1 2 cðx 0ÞÞ
ucðcðx 0ÞÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mBðx, x 0Þ

: (17)

The first component mA(x, x 0) represents risk sharing across two adja-
cent generations of the young, and the second component mB(x, x

0) rep-
resents risk sharing between the young and the old at a given date. In a
representative-agent model, mðx, x 0Þ 5 mAðx, x 0Þ and the variability in the
stochastic discount factor is determined by the variability of consumption,
which in an endowment economy depends on the variability of the aggre-
gate endowment. In contrast, in an overlapping-generations model, if there
is variability in the degree of risk sharing between the young and the old,
then there is variability in mB(x, x

0), which interacts with the variability in
mA(x, x

0) with consequent implications for asset pricing. In the optimal sus-
tainable intergenerational insurance, the variability of mB(x, x

0) is deter-
mined by the first-order condition (12) and the updating rule (15). This
variability depends on the current endowment share and the outstanding
debt. To simplify the discussion, we confine attention to states in the ergo-
dic set.31 We also assume that the bounds on debt do not bind. In this case,
30 We follow several authors in addressing asset pricing in overlapping-generationsmodels
(see, e.g., Huberman 1984; Huffman 1986; Labadie; 1986); Gârleanu and Panageas (2023)
offer a recent contribution.

31 Limiting the analysis to the ergodic set is justified for two reasons. First, there is con-
vergence to the ergodic set within finite time, as shown in sec. V. Second, absent con-
straint (4), the planner sets the initial debt to dmin, which lies in the ergodic set. Prop. 5
shows that the ergodic set is countable. However, for simplicity and because it corresponds
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the first best exhibits complete insurance with the consumption share inde-
pendent of the endowment state.32

Let Q denote the matrix of state prices qðx, x 0Þ 5 pðrÞmðx, x 0Þ, where
x 5 ðs, dÞ and x 0 5 ðr , brðdÞÞ, and let ϱ and w be the Perron root and cor-
responding eigenvector of Q. The Ross recovery theorem (Ross 2015)
shows that the k-period stochastic discount factor mkðx, x 0Þ 5 ϱkwðxÞ=
wðx 0Þ, where ϱ and w(x) can be interpreted as the discount factor and in-
versemarginal utility of a pseudorepresentative agent. Using the first-order
condition (12) and the updating rule (15), f ðx 0Þ=ð1 2 f ðx 0ÞÞ 5 ðd=bÞð11
mðx 0ÞÞ=ð1 1 mðxÞÞ, where f ðxÞ 5 sð1 2 dÞ is the consumption share of
the young and m(x) is the multiplier on the corresponding participation
constraint. To ease notation, let nðxÞ ≔ 1 1 mðxÞ and nmax ≔ maxxnðxÞ.
Since we show below that ϱ 5 d, it follows from equation (17) that wðxÞ 5
f ðxÞ=nðxÞ.33 The unit price of a k-period discount bond in state x, pk(x), is
given by the corresponding row sum of Qk, the k-fold matrix power of Q.
The corresponding yield is ykðxÞ ≔ 2ð1=kÞ logðpkðxÞÞ and the yield on the
long bond is y∞ðxÞ ≔ limk→∞ykðxÞ.
Martin and Ross (2019) show that jykðxÞ 2 y∞ðxÞj ≤ ð1=kÞΥ for Υ ≔

logðwmax=wminÞ, where wmax and wmin are the maximum and minimum val-
ues of w. That is, Υ measures the range of the eigenvector and bounds
the deviation of the yield from its long-run value. A low value of Υmeans
that the yield curve is relatively flat and that yields are not very sensitive
to changes in debt.34

The matrixQ is the growth-adjusted state price matrix. Let qk
1ðx, x 0Þ and

mk
1ðx, x 0Þ denote the unadjusted state prices and marginal rate of substitu-

tion conditional on state x when x 0 is the state and g is the growth factor k-
periods ahead. Since the consumption shares are independent of the his-
tory of shocks to growth rates (proposition 1) and the shocks to growth
rates are i.i.d., it can be checked that qk

1ðx, x 0Þ 5 ςðgÞ�g2kð�g=gÞqkðx, x 0Þ
and mk

1ðx, x 0Þ 5 �g2kð�g=gÞmkðx, x 0Þ where qkðx, x 0Þ 5pkðx, x 0Þmkðx, x 0Þ.35
to our numerical procedures, we assume additionally that the ergodic set is finite. This is
justifiable because it is possible to adapt the arguments to the denumerable case or even
more general state spaces (see, e.g., Hansen and Scheinkman 2009; Christensen 2017).

32 Although it is restrictive to assume that the bounds on debt are nonbinding, it simpli-
fies the analysis, and we will note how results differ when the bounds are binding.

33 The multiplicative decomposition of w(x) into the components f(x) and 1=nðxÞ is rem-
iniscent of a number of other asset-pricing models (see, e.g. Bansal and Lehmann 1997).

34 The bound Υ provides a measure of the variability of the yields. Two alternative mea-
sures used to assess how risk is shared are the insurance coefficient (see, e.g., Kaplan and
Violante 2010) and the consumption-equivalent welfare change (see, e.g., Song et al.
2015). We discuss these alternatives in part C of the online appendix and show that these
two measures share similar comparative static properties with the bound Υ.

35 With stochastic growth, the Ross recovery theorem does not recover the true probabil-
ity transition matrix. Instead, it recovers a transition matrix where probabilities are weighted
by the relative growth factors (see, e.g., Borovička, Hansen, and Scheinkman 2016 for a
discussion).
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Similarly, let yk1ðxÞ denote the yield on the k-period bond in the unadjusted
case. Then, we can establish the following proposition.
Proposition 6. For each x ∈ E : (i) yk1ðxÞ 5 ykðxÞ 1 logð�gÞ for each

k 5 1, 2 : : : . (ii) In the limit, y∞1ðxÞ 5 y∞ 1 logð�gÞ with y∞ 5 2logðdÞ.
(iii) yk(x) is increasing in d for each s and k. (iv) The long-short spreads
satisfy y∞ 2 y1ð1, d*ð1ÞÞ > 0 > y∞ 2 y1ðI , d*ðI ÞÞ. (v) The Martin-Ross mea-
sure Υ 5 logðnmaxÞ, where nmax 5 nðI , d*ðI ÞÞ.
Part i of proposition 6 shows that the difference between the yields in

the growth-adjusted and unadjusted cases is simply the average growth
rate as measured by logð�gÞ, independent of the current state x or the
bond maturity k. This independence follows from assumption 1 that
the growth shocks are i.i.d., meaning that each generation faces the
same growth risk. A similar result, that market risk premiums are unaf-
fected by market incompleteness, is established by Krueger and Lustig
(2010) in a model with infinitely lived agents and uninsurable idiosyn-
cratic as well as aggregate risk. Part ii follows from the result of Martin
and Ross (2019) that the yield on the long bond is y∞ 5 2logðϱÞ, inde-
pendent of x, and that ϱ 5 d when the upper-bound and nonnegativity
constraints do not bind.36 To understand part iii, note that the consump-
tion share of the young is decreasing in d and that, since br(d) is increas-
ing in d from corollary 1, the consumption share of the old next period is
increasing in d. Consequently, the stochastic discount factor m(x, x0) de-
creases in d. Since the transition probabilities do not depend on d, the
price of the 1-period discount bond is decreasing in d, or, equivalently,
its yield is increasing in d. Thus, an agent born into a generation with
higher debt faces higher 1-period yields. Since bond prices are linked re-
cursively, this property holds for bonds of any maturity.
Part iv of proposition 6 shows that the long-short spread y∞ 2 y1ðxÞ is

positive when the young have a low endowment share and debt is low. In
this case, it follows from section VI that debt is expected to rise in the
future with a corresponding increase in yields. Conversely, the long-short
spread is negative when the young have a high endowment share and
debt is high, in which case both debt and yields are expected to fall in
the future. Part v shows that the boundΥ is determined by the multiplier
on the participation constraint, nmax, corresponding to the fixed point of
the debt policy function for the largest endowment share. That is, the
bound on the variability of the yield curve is determined by the tightness
of the participation constraint at the largest debt in the ergodic set.
To help understand the results of proposition 6, consider the first-

best and deterministic benchmarks of section III. At the first best, the
debt policy functions are constants, and the yield curve is flat with
36 If the upper-bound constraint does not bind, then ϱ ≤ d, and if the nonnegativity con-
straints do not bind, then ϱ ≥ d.
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yk1ðxÞ 52logðdÞ 1 logð�gÞ andΥ 5 0. Despite the flat yield curve, the risk
premium on the aggregate risk is positive because the return on debt is
high when the growth rate is high. Specifically, the expected return on
a 1-period bond is Egg=d while the risk-free rate is �g=d. Thus, the risk pre-
mium is ðEgg 2 �gÞ=d, which is strictly positive when the growth shocks are
nondegenerate. A Lucas tree or any other asset that pays a share of the
aggregate endowment will carry this positive risk premium, so that the risk
premium on aggregate risk corresponds to the risk premium on debt with
complete insurance. In the deterministic case, the risk premium is 0. How-
ever, along the transition path, as debt falls, the yield yk(d) decreases to its
long-run value of y∞ 5 2logðdÞ 1 logðgÞ, where g is the deterministic
growth rate. Thus, Υ > 0 in the transition, even though there is no risk.37
VIII. Debt Valuation
The budget constraint in equation (16) can be iterated forward to show
that current debt equals the present value of all future primary surpluses.38

As pointed out by Bohn (1995), this present value depends on the risk pre-
miumondebt. In this section, we focus on themultiplicative risk premium
on debt because it is the negative of the covariance between the stochastic
discount factor and the return ondebt and because this covariance is inde-
pendent of the endowment share. When there is a growth shock g, the un-
adjusted return on debt is R1ðx, x 0Þ 5 rbrðdÞge=ðsBRðdÞeÞ, where sBR(d)e
is the value of bonds issued today. The multiplicative risk premium is
MRP1ðdÞ 5 ð�R1ðxÞ 2 R f

1ðxÞÞ=R f
1ðxÞ, where �R1ðxÞ is the expected return

ondebt andR f
1ðxÞ is the risk-free rate on interest in state x. Denote the cor-

responding growth-adjusted values by MRP(d), �RðxÞ, and R f(x). As shown
in section VII, the risk premium on debt with complete insurance equals
the risk premium on aggregate risk, and we denote the commonmultipli-
cative risk premium by MRP*. The following proposition shows that the
multiplicative risk premium has a linear decomposition that depends on
the growth-adjusted multiplicative risk premium and the multiplicative risk
premium with complete insurance.
Proposition 7. The multiplicative risk premium MRP1ðdÞ 5

MRPðdÞ 1 aðdÞMRP*, where aðdÞ 5 �RðxÞ=R fðxÞ. The components satisfy
(i) MRP* 5 ðEgg 2 �gÞ=�g ≥ 0, (ii) MRPðdÞ < 0, and (iii) 0 < aðdÞ < 1.
The decomposition ofMRP1(d) into components depending onMRP(d)

and MRP* is analogous to the result of proposition 6 that the conditional
37 The ergodic set is degenerate at d* in the deterministic case. Once debt reaches this
level, the yield curve is flat.

38 Jiang et al. (2023) define fiscal capacity as the present value of future surpluses. Since,
in our model, debt is determined optimally, there is no mispricing or bubble component,
and debt and fiscal capacity are equivalent in this sense. Other authors often use the term
“fiscal capacity” more broadly to encompass both the debt limit and fiscal space.
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yield is the sum of a growth-adjusted yield and a component corresponding
to the average growth rate. In the same way as proposition 6, this decompo-
sition follows from assumption 1 that the shocks to growth rates and endow-
ment shares are independent of each other and i.i.d. Part i of proposition 7
shows that MRP* is nonnegative. As discussed in section VII, MRP* is strictly
positive when growth shocks are nondegenerate. To understandpart ii, note
that the growth-adjusted returnRðx, x 0Þ 5rbrðdÞ=ðsBRðdÞÞ is increasing in r,
frompart ii of corollary 1.Moreover, the consumption share of the old is de-
creasing in r, from lemma 2, and, hence, the stochastic discount factorm(x,
x 0) is increasing in r. Consequently, the returns are high when the marginal
utility of consumption of the old is high, resulting in a positive covariance
term and a corresponding negative growth-adjusted multiplicative risk pre-
mium. By comparison, with complete insurance, the stochastic discount
factor is constant, so that its covariance with the returns is 0, and, hence,
MRPðdÞ 5 0. As noted in equation (17), the stochastic discount factor com-
prises two components that measure risk sharing across two adjacent gener-
ations of the youngand risk sharingbetween the young and theold.Thefirst
component mA(x, x 0) is decreasing in r, whereas the second component mB

(x, x 0) is increasing in r. In a representative-agentmodel, onlymA(x, x0) is pres-
ent, and high debt returns are associated with a low marginal utility of con-
sumption of the young, generating a positive risk premium. In contrast, mB

(x, x 0) dominates in the overlapping-generations model, making debt a
negative-beta asset.
Part iii of proposition 7 shows that aðdÞ < 1, and, hence, the gap

MRP* 2 MRP1ðdÞ > 0 for each d. That is, the multiplicative risk premium
on debt is lower than the multiplicative risk premium on aggregate risk.
Using US data, Jiang et al. (2021) show that the observed value of debt
is higher than the present value of future primary surpluses when dis-
counted using the risk premium on aggregate risk, a debt valuation puz-
zle. Convenience yields, seigniorage, and other service-flow values have
been offered as potential explanations for this puzzle. Our results suggest
an additional explanation. In the presence of enforcement frictions, risk
sharing is partial and debt serves as a hedge against idiosyncratic risk, low-
ering the risk premium and raising the value of debt.39

Part iii of proposition 7 also shows that the gap MRP* 2 MRP1ðdÞ de-
pends on d, evolving according to the dynamics of debt outlined in sec-
tion VI. For d ≤ dc, this gap is independent of d. For d > dc, the effect of
39 Jiang et al. (2022) examine how to manufacture risk-free government debt. With the
primary surplus disaggregated into tax and expenditure components, the risk premium on
debt is a weighted average of the risk premiums on taxes and expenditure. Consequently,
the risk premium on debt can be eliminated, but only at the cost of making taxes or expen-
ditures less cyclical. Since we do not distinguish between taxes and expenditure, the risk
premium on the primary surplus equals the risk premium on debt, and making debt
risk-free may not be feasible or desirable.
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debt on the size of the gap is ambiguous. Fromproposition 6, the risk-free
interest rate increases with debt. Therefore, the gap rises or falls depend-
ing on whether the expected return on debt increases with debt at a faster
or slower rate than the risk-free interest rate. Although the overall effect is
ambiguous, section IX provides an example in which MRP* 2 MRP1ðdÞ
decreases with d for d > dc.
IX. Two-State Example
Finding the optimal sustainable intergenerational insurance is complex
because it involves solving the functional equation of problem (P1). In
this section, we present an example with I 5 2 that can be solved using
a shooting algorithm.40 For this case, we solve for the invariant distribu-
tion and derive a closed-form solution for the Martin-Ross measure.
Suppose that there are two possible endowment shares for the young:

sð1Þ 5 k 2 εð1 2 pÞ=p and sð2Þ 5 k 1 ε, where p 5 pð1Þ, k ≥ 1=2, and
ε > 0. The young are poor in state 1 and rich in state 2. An increase in
ε is a mean-preserving spread of the risk. By assumptions 3 and 4,
d*ð2Þ > d0ð2Þ > dc > d0ð1Þ 5 d*ð1Þ 5 0. By corollary 1, the debt policy
functions satisfy b2ðdÞ > b1ðdÞ. We make two additional assumptions.
Assumption 5. (i) d*ð2Þ < dmax. (ii) b1ðd*ð2ÞÞ < dc.
Part i of assumption 5 implies that the debt limit never binds. By part ii,

debt is below dc whenever state 1 occurs. In such a case, the history of
endowment states is forgotten once state 1 occurs and the dynamics of
debt depend only on the number of consecutive repetitions of state 2
in the most recent history, starting from the resetting level d0(s). The
more repetitions of state 2, the higher the debt. The set of parameter val-
ues that satisfy assumption 5, as well as assumptions 2–4, is nonempty with
the following belonging to this set.
Example 1. d 5 b 5 expð21=75Þ, p 5 1=2, k 5 3=5, and ε 5 1=10.
To simplify notation, let d(n)(s) be the debt in state s 5 1,  2 after n

consecutive recurrences of state 2, where d ð0ÞðsÞ 5 d0ðsÞ are the resetting
levels and limn→∞d ðnÞð2Þ 5 d*ð2Þ. Under assumption 5, the invariant dis-
tribution of debt is a transformation of a geometric distribution and the
bound Υ has a closed-form solution.
Proposition 8. Under assumption 5: (i) The ergodic set E 5

fðs, d ðnÞðsÞÞn≥0,s51,2g with a probability mass function fðs, d ðnÞðsÞÞ 5
fðs, d0ðsÞÞð1 2 pÞn for n ≥ 1, where fð1, d0ð1ÞÞ 5 p2 and fð2, d0ð2ÞÞ 5
pð1 2 pÞ. (ii) Υ 5 logðd=bÞ 2 logðx21 2 1Þ, where

x 5
d

b

� �12pð Þ=p
b 1 d

d

� �11bð12pÞ½ �=bp
k 1 εð Þ1= bpð Þ 1 2 k 2 εð Þ 12pð Þ=p 1 2 k 1 ε

1 2 p

p

� �
:

40 Part E of the online appendix provides details of the shooting algorithm.
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As stated in part i of proposition 8, the invariant distribution has a prob-
ability mass of fð1, d0ð1ÞÞ 5 p2 and fð2, d0ð2ÞÞ 5 pð1 2 pÞ at the regener-
ation states and zero probability mass at states (s, bs(d*(2))). Figure 4A plots
the invariant distribution for the parameter values of example 1. Low debt
levels occur only in state 1, while high levels occur only in state 2.
Part ii of proposition 8 provides a closed-form solution for the boundΥ.

By proposition 6, the bound is strictly positive and determined by the tight-
ness of the participation constraint of the young when x 5 ð2, d*ð2ÞÞ. Us-
ing this closed-form solution, it is easily checked that Υ decreases with the
discount factors b or d; that is, as either the agent or the planner becomes
more patient. Moreover,Υ decreases with the average endowment share to
the young, k, and increases with risk, ε.41

Figure 4B illustrates the impact of debt on the risk premium in a version
of example 1 with stochastic growth. In this example, the arithmetic mean
growth rate is set to 4% and the corresponding multiplicative risk pre-
mium is approximately 5%. Proposition 7 shows that MRP* > MRP1ðdÞ,
and figure 4B illustrates that the gap is constant when debt is low but de-
creases with debt when debt is high. As noted in section VIII, the multi-
plicative risk premium may increase or decrease with debt for d > dc,
FIG. 4.—Invariant distribution (A) and multiplicative risk premium (B). Both panels use
the parameter values of example 1. A, The invariant distribution fðs, d ðnÞðsÞÞ for s 5 1 (light-
gray bars) and s 5 2 (dark-gray bars). B, The distortion of the multiplicative risk premium
relative to its value under complete insurance, Δ*ðMRPðdÞÞ 5 ðMRP* 2 MRP1ðdÞÞ=MRP*,
for the values of d in the ergodic set. Light-gray dots correspond to s 5 1 and dark-gray dots
to s 5 2. Circumference indicates the frequency of occurrence.
41 Part C of the online appendix presents some comparative static properties of Υ for
parameter values that violate assumption 5.
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depending on the relative magnitude of the effect of debt on its return
and the marginal utility of consumption of the old. In this example,
the effect on the return dominates, causing the risk premium to rise with
debt. Since the risk premium on aggregate risk is independent of debt, a
rise in debt narrows the gap between the risk premiums on aggregate risk
and debt.
X. Conclusion
The paper has developed a theory of intergenerational insurance in a
stochastic overlapping-generations model with limited enforcement of
risk-sharing transfers. Despite the stationarity of the underlying eco-
nomic environment, the generational risk is spread across future gener-
ations in ways that cause transfers to be history dependent. There is pe-
riodic resetting, and the history of shocks is forgotten when this occurs.
By interpreting intergenerational insurance in terms of debt, we provide
a theory of the dynamics of debt that offers a new perspective on the fis-
cal reaction function and the sustainability and valuation of debt. With
complete insurance, the fiscal reaction function is linear, and the risk pre-
miumondebt equals the risk premiumon aggregate risk.When there are
enforcement frictions, intergenerational insurance is incomplete, the fis-
cal reaction function is nonlinear, and the risk premium on debt is below
the risk premium on aggregate risk.
The results suggest several potential directions for future research.

First, the qualitative predictions about the dynamics of debt could be
compared with historical data for advanced economies, for example,
with a specific focus on the baby-boom and subsequent generations. Sec-
ond, the model has no heterogeneity within a generation. Enriching the
demographic structure of the model, either by having more than two
overlapping generations or by allowing for heterogeneity within the
same generation, would make it possible to address the interdepen-
dence between intergenerational and intragenerational insurance. Third,
to study the interplay between self-insurance and intergenerational insur-
ance, a technology that can transform endowments across dates could be
added. Finally, incorporating a stochastic demand for public good provi-
sion would allow the study of the risk premiums associated with the vari-
ous components of the primary surplus.
Appendix

Proofs of Main Results

This appendix contains the proofs of the main results. Omitted proofs can be
found in part B of the online appendix.
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A1. Proof of Lemma 2

Part i.—Since the constraint set Φ(s, q) is convex and the objective function is
strictly concave, the policy function gr(q, s) is single-valued and continuous in
q. Let hsðqÞ ≔ 2ðd=bÞVqðs, qÞ, where hs :ΩðsÞ→½lminðsÞ, lmaxðsÞ� with lminðsÞ 5
maxf0, ðd=bÞðð1 2 sÞ=sÞ 2 1g. Let h21

s :½lminðsÞ, lmaxðsÞ�→ΩðsÞ be its inverse. By
the concavity of the frontier V(s, q) in q, h21

s ðlÞ is strictly increasing in l for
l > lminðsÞ. Suppose first that q ≥ q0ðsÞ. Hence, from (7), f ðs, qÞ 5 1 2 expðqÞ.
Since gr ðs, qÞ 5 maxfqminðr Þ, minfqmaxðr Þ, h21

r ðmðs, qÞÞgg, substituting into (11),
there is a unique value (possibly 0) of m that satisfies the constraint. If
mðs, qÞ 5 0, then gr ðs, qÞ 5 q0ðr Þ for each r. If mðs, qÞ > 0, then m(q, s) is strictly in-
creasing in q since f(s, q) is strictly decreasing in q and h21

r ðmÞ is increasing in m.
Thus, gr(s, q) is strictly increasing in q for gr ðs, qÞ ∈ ðq0ðr Þ, qmaxðrÞÞ. If q < q0ðsÞ,
then lðs, qÞ 5 0 and, hence, since f(s, q) is independent of q, gr(s, q) is also inde-
pendent of q.

Part ii.—Consider states sðiÞ > sði 2 1Þ, i 5 2, : : : , I . For brevity, write gr(i, q) for
gr ðsðiÞ, qÞ and gi(s, q) for gr ðiÞðs, qÞ , and so on. We first show that mði, qÞ ≥
mði 2 1, qÞ for q ∈ ½qminði 2 1Þ, qmaxðiÞ� with a strict inequality unless mði, qÞ 5
mði 2 1, qÞ 5 0. Suppose to the contrary that mði 2 1, qÞ ≥ mði, qÞ > 0. It fol-
lows from (12) that gr ði 2 1, qÞ ≥ gr ði, qÞ. Using (11) and ûðsÞ 5 logðsÞ1
borpðr Þ logð1 2 r Þ gives

logð f ði 2 1, qÞÞ 2 logð f ði, qÞÞ 5 ûði 2 1Þ 2 ûðiÞð Þ

1 borpðr Þ gr ði, qÞ 2 gr ði 2 1, qÞð Þ:
Since ûði 2 1Þ 2 ûðiÞ < 0 and gr ði, qÞ 2 gr ði 2 1, qÞ ≤ 0, f ði, qÞ > f ði 2 1, qÞ and
logð1 2 f ði 2 1, qÞÞ > logð1 2 f ði, qÞÞ ≥ q. Hence, lði 2 1, qÞ 5 0 ≤ lði, qÞ.
However, since lði, qÞ ≥ lði 2 1, qÞ and mði 2 1, qÞ ≥ mði, qÞ, it follows from
(12) that f ði 2 1, qÞ ≥ f ði, qÞ, a contradiction. Hence, if mði 2 1, qÞ 5 mði, qÞ 5
0, then gr ði 2 1, qÞ 5 gr ði, qÞ 5 q0ðr Þ independent of s. If, however, mði 2 1, qÞ >
0, then it follows from (12) that gr ði 2 1, qÞ < gr ði, qÞ for q ∈ ½qminði 2 1Þ, qmaxðiÞ�.
By assumption 3, mð1, q0ð1ÞÞ 5 0 , and by assumption 4, mðI , q0ðI ÞÞ > 0. Since
m(s, q) is increasing in q, mðI , q0ðI ÞÞ > 0 and mðI , qÞ > mð1, qÞ for q ∈ ðq0ð1Þ,
qmaxðI ÞÞ. Hence, from (13), Vqðr , gr ðI , qÞÞ < Vqðr , gr ð1, qÞÞ, and therefore, from
the strict concavity of V(r, q) in q for q > q0ð1Þ ≥ q0ðr Þ, it follows that gr ðI , qÞ >
gr ð1, qÞ.

Next, if giðxÞ ≤ q0ði 2 1Þ or gi21ðxÞ ≥ qmaxðiÞ, then gi21ðxÞ ≥ giðxÞ. Therefore,
suppose that giðxÞ, gi21ðxÞ ∈ ðq0ði 2 1Þ, qmaxðiÞÞ. We first show that Vqði 2 1, qÞ ≥
Vqði, qÞ for q ∈ ðq0ði 2 1Þ, qmaxðiÞÞ. For q > q0ði 2 1Þ, it follows that lði 2
1, qÞ > 0 and since q0ði 2 1Þ ≥ q0ðiÞ, lði, qÞ > 0. Therefore, f ði, qÞ 5 f ði 2 1, qÞ.
In this case, it follows from above that mði, qÞ ≥ mði 2 1, qÞ with equality only if
mði, qÞ 5 mði 2 1, qÞ 5 0. Hence, it follows from (12) that lði 2 1, qÞ ≤ lði, qÞ
with strict inequality if mði, qÞ > 0. Using (14), it follows that Vqði 2 1, qÞ ≥
Vqði, qÞ with strict inequality if mði, qÞ > 0. For giðxÞ, gi21ðxÞ > q0ði 2 1Þ,
hiðxÞ 5 hi21ðxÞ 5 0, and for giðxÞ, gi21ðxÞ < qmaxðiÞ, yiðxÞ 5 yi21ðxÞ 5 0. Hence,
it follows from (13) that Vqði, giðs, qÞÞ 5 Vqði 2 1, gi21ðs, qÞÞ. Since Vqði 2 1, qÞ ≥
Vqði, qÞ, it follows from the concavity of V(⋅, q) in q that gi21ðs, qÞ ≥ giðs, qÞ.
The inequality is strict if Vqði 2 1, qÞ > Vqði, qÞ by the strict concavity of V(⋅, q) in
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q. Since mðI , qÞ > mð1, qÞ for q ∈ ðq0ð1Þ, qmaxðI ÞÞ, Vqð1, qÞ > VqðI , qÞ and, hence,
g1ðs, qÞ > gI ðs, qÞ.

Part iii.—Since mð1, q0ð1ÞÞ 5 0 and f ð1, q0ð1ÞÞ 5 sð1Þ, it follows that
gr ð1, q0ð1ÞÞ 5 q0ðr Þ for each r. Since q0ðr Þ > qminðr Þ for at least some r, it follows
that (11) is strictly slack, and there is some qc > q0ð1Þ such that (11) is nonbind-
ing with gr ð1, qÞ 5 q0ðrÞ for each r and q ∈ ½q0ð1Þ, qc�.

Part iv.—It follows from (12) that, for q 5 q*ðsÞ > qminðsÞ, mðs, qÞ 5 lðs, qÞ. In
this case, Vqðs, q*ðsÞÞ 5 Vqðr , gr ðs, q*ðsÞÞÞ for gr ðs, q*ðsÞÞ ∈ ðq0ðr Þ, qmaxðr ÞÞ, and,
in particular, gsðs, q*ðsÞÞ 5 q*ðsÞ, so that q*(s) is a fixed point of the mapping
gs(s, q). Equally, for q < q*ðsÞ, it follows from (12) that mðs, qÞ > lðs, qÞ, so that,
from the concavity of the frontier, gsðs, qÞ > q*ðsÞ. Likewise, for q > q*ðsÞ, it fol-
lows from (12) that mðs, qÞ < lðs, qÞ, so that, from the concavity of the frontier,
gsðs, qÞ < q*ðsÞ. If q*ðsÞ 5 qminðsÞ, then f ðs, qÞ 5 s and mðs, q*ðsÞÞ 5 0 by as-
sumption 2. Hence, gsðs, q*ðsÞÞ 5 q*ðsÞ. Since q0(s) is decreasing in s, it follows
by assumption 4 that q0ðI Þ < qfðI Þ ≤ q*. QED
A2. Proof of Lemma 3

Part i.—For q > q0ðsÞ, lðs, qÞ > 0 and therefore, it follows from (7) that
f ðs, qÞ 5 1 2 expðwÞ. For q 5 q0ðsÞ, either lðs, q0ðsÞÞ > 0 or lðs, q0ðsÞÞ 5 0. In
either case, it follows from (7) or the definition of q0(s) that f ðs, q0ðsÞÞ 5
1 2 expðw0ðsÞÞ. For q < q0ðsÞ, it follows that lðs, qÞ 5 0. From (12), let
zðs, mÞ 5 minfdð1 1 mÞ=ðb 1 dð1 1 mÞÞ, sg, where zðs, mÞ is increasing in m with
zðs, 0Þ 5 c*ðsÞ. Recall that h21

r ðmÞ, defined in the proof of lemma 2, satisfies
Vqðr , h21

r ðmÞÞ52ðb=dÞm where gr ðs, qÞ5maxfqminðr Þ, minfqmaxðr Þ,h21
r ðmðs, qÞÞgg.

Since h21
r ðmÞ is increasing in m, it follows from (11) that when f ðs, q0ðsÞÞ 5

1 2 expðw0ðsÞÞ there is a unique value of m, say m0ðsÞ, that solves the constraint.
Furthermore, q0ðsÞ 5 logð1 2 zðs, m0ðsÞÞÞ.

Part ii.—Since ûðiÞ > ûði 2 1Þ, it follows from part i that m0ðiÞ ≥ m0ði 2 1Þ with
strict inequality if m0ðiÞ > 0. Therefore, since z(s, m) is strictly increasing in m

and independent of s for m > 0, c0ðiÞ ≥ c0ði 2 1Þ with strict inequality if m0ðiÞ >
0. By assumption 4, m0ðI Þ > 0 and by assumption 3, m0ð1Þ 5 0. Hence, c0ðI Þ >
c0ð1Þ.

Part iii.—Lemma 2 establishes that, at the fixed point, qfðsÞ 5 minfqmaxðsÞ,
q*ðsÞg. Hence, f ðs, qfðsÞÞ ≤ c*ðsÞ with equality for qfðsÞ < qmaxðsÞ. QED
A3. Proof of Proposition 5

Using the properties of gr(x) from lemma 2 and the argument in the text, it fol-
lows that there is a k ≥ 1 and an ε > 0 such that Pkðx, fx0gÞ > ε for each x ∈ X
and any x0. Hence, condition M of Stokey and Lucas (1989, 348) is satisfied.
Therefore, theorem 11.12 of Stokey and Lucas (1989) applies, and there is strong
convergence. Nondegeneracy with jE j > I follows from assumption 4. The finite-
ness of the return times follows from lemma 2iii and the finiteness of I . The re-
lationship between the probability mass and the expected return times and the
pointwise convergence is standard (see, e.g., theorems 10.2.3 and 13.1.2 of Meyn
and Tweedie 2009). QED
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A4. Proof of Proposition 6

Part i.—Since qk
1ðx, x 0Þ 5 ςðgÞ�g2kð�g=gÞqkðx, x 0Þ, summing over x 0 and g, the unad-

justed bond prices are pk
1ðxÞ 5 �g2kpkðxÞ. Hence, the yields satisfy yk1ðxÞ 5 ykðxÞ1

logð�gÞ.
Part ii.—It is a standard result (see, e.g., Martin and Ross 2019) that

limk →∞ykðxÞ 5 Ef½logðmðx, x 0ÞÞ� 5 logðϱÞ, where Ef is the expectation taken over
the invariant distribution of x and ϱ is the Perron root of the matrix Q. Taking
logs in equation (17), logðmðx, x 0ÞÞ 5 logðbÞ 1 logðcðxÞÞ 2 logð1 2 cðx 0ÞÞ. Using
equations (12) and (15), assuming that the nonnegativity constraints and
the upper-bound constraint do not bind, gives logðcðx 0ÞÞ 2 logð1 2 cðx 0ÞÞ 5
2logðb=dÞ 1 logðnðx 0ÞÞ 2 logðnðxÞÞ, where nðxÞ 5 1 1 mðxÞ. Therefore,
logðmðx, x 0ÞÞ 5 logðdÞ 1 logðcðxÞÞ 2 logðcðx 0ÞÞ 1 logðnðx 0ÞÞ 2 logðnðxÞÞ. Taking
expectations at the invariant distribution, Ef½logðmðx, x 0ÞÞ� 5 logðdÞ. Hence,
ϱ 5 d and limk →∞yk1ðxÞ 5 logðdÞ 1 logð�gÞ.

Part iii.—Recall that mðx, x 0Þ 5 mððs, dÞ, ðr , br ðdÞÞÞ 5 bsð1 2 dÞ=ð12
rð1 2 br ðdÞÞÞ. Since br(d) is increasing in d by corollary 1, it follows that m(x, x 0)
is decreasing in d. The price of a 1-period discount bond in state (s, d) is
p1ðs, dÞ 5 orpðr Þmððs, dÞ, ðr , br ðdÞÞÞ, which is also decreasing in d. Making the
induction hypothesis that the price of a k-period discount bond is decreasing
in d, pk11ðs, dÞ 5 orpðr Þmððs, dÞ, ðr , br ðdÞÞÞpkðr , br ðdÞÞ. Since pk(s, d) and
mððs, dÞ,ðr , br ðdÞÞÞ are positive and decreasing in d, and br(d) is increasing in d,
it follows that pk11ðs, dÞ is decreasing d. Hence, the conditional yield ykðs, dÞ 5
2ð1=kÞ logðpkðs, dÞÞ is increasing in d for each s and k.

Part iv.—From corollary 1, the fixed points of the mappings of br(d) are d*(r)
when the upper-bound constraint does not bind, and the consumption share
is at the first best at these fixed points. Hence, mððs, d*ðsÞÞ, ðs, d*ðsÞÞÞ 5 d. By
lemma 2, the consumption share of the old decreases with r. Hence,
mðð1, d*ð1ÞÞ, ðr , br ðd*ð1ÞÞÞÞ ≥ d with a strict inequality for some r. Taking expecta-
tions, the bond price p1ð1, d*ð1ÞÞ > d, and consequently, the yield y1ð1, d*ð1ÞÞ <
2 logðdÞ. Since y∞ 5 2 logðdÞ, y∞ 2 y1ð1, d*ð1ÞÞ > 0. Likewise, it can be checked
that mððI , d*ðI ÞÞ, ðr , br ðd*ðI ÞÞÞÞ ≤ d with a strict inequality for some r, which
shows that y∞ 2 y1ðI , d*ðI ÞÞ < 0.

Part v.—By definition Υ 5 logðwmax=wminÞ, where wmax and wmin are the maxi-
mum and minimum values of the eigenvector of the matrix Q. Using (12) and
(15) and assuming that the nonnegativity and upper-bound constraints do not
bind, mBðx, x 0Þ 5 nðx 0Þ=nðxÞ. Since mAðx, x 0Þ 5 df ðxÞ=f ðx 0Þ, the eigenvector wðxÞ 5
f ðxÞ=nðxÞ. Since f ðx 0Þ 5 dnðxÞ=ðbnðxÞ 1 dnðx 0ÞÞ, it follows that wðx 0Þ 5 d=ðbnðxÞ1
dnðx 0ÞÞ. The maximum value of w(x 0) occurs when nðxÞ 5 nðx 0Þ 5 1, in which case
wmax 5 d=ðb 1 dÞ. The minimum value occurs when nðxÞ 5 nðx 0Þ 5 nmax, in which
case wmin 5 d=ððb 1 dÞnmaxÞ. Hence, Υ 5 logðwmax=wminÞ 5 logðnmaxÞ. It is easily
checked that n(s, d) is increasing in d with nðs, d0ðsÞÞ increasing in s, so that for
ðs, dÞ ∈ E , nmax 5 nðI , d*ðI ÞÞ. QED
A5. Proof of Proposition 7

Since Rðx, x 0Þ 5 rbr ðdÞ=ðsBRðdÞÞ, the expected return �RðxÞ 5 orpðr Þrbr ðdÞ=
ðsBRðdÞÞ. The risk-free rate is R fðxÞ 5 ðor qðx, x 0ÞÞ21, where qðx, x 0Þ 5
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pðr Þbsð1 2 dÞ=ð1 2 rð1 2 br ðdÞÞ. Therefore, �RðxÞ=R fðxÞ is independent of s.
Since the risk-adjusted return on any asset is equal to the risk-free return, it fol-
lows thatMRPðdÞ 5 2covðmðx, x 0Þ, Rðx, x 0ÞÞ, wheremðx, x 0Þ 5 qðx, x 0Þ=pðrÞ. From
corollary 1, br(d) is increasing in r and, hence, R(x, x 0) is increasing with r. From
lemma 2, old consumption (1 2 r ð1 2 br ðdÞÞ) falls with r, and, hence, m(x, x 0) is
increasing with r. By assumption 4, risk sharing is incomplete, and, hence, the co-
variance term is positive and MRPðdÞ < 0. That is, �RðxÞ=R fðxÞ < 1. With growth
shocks, R1ðx, x 0Þ 5 Rðx, x 0Þg and q1ðx, x 0Þ 5 ςðgÞqðx, x 0Þ=g. Hence, �R1ðxÞ 5
�RðxÞðEggÞ, R f

1ðxÞ 5 R fðxÞ�g, and

MRP1ðdÞ 5
�R1ðxÞ 2 R f

1ðxÞ
R f

1ðxÞ 5
�RðxÞ
R fðxÞ 2 1

� �
1

�RðxÞ
R fðxÞ

� �
Egg

�g
2 1

� �
:

Let R*
1ðx, x 0Þ denote the returns with complete insurance. It is easy to check that

R*
1ðx, x 0Þ 5 r 2 d= b 1 dð Þ½ �ð Þg

d orpr r 2 d= b 1 dð Þ½ �	 
 :
The corresponding expected return is �R*

1ðxÞ 5 ðEggÞ=d. Likewise, the state price
is q*1ðx, x 0Þ 5 dςðgÞpðr Þ=g, so that the risk-free return is R

f*
1 5 �g=d. Hence, the

corresponding multiplicative risk premium is MRP* 5 ðEgg 2 �gÞ=�g. Since the
arithmetic mean is larger than the harmonic mean, MRP* > 0. Substituting into
the equation above givesMRP1ðdÞ 5 MRPðdÞ 1 aðdÞMRP*, where aðdÞ 5 �RðxÞ=
R fðxÞ, as required. QED

A6. Proof of Proposition 8

Part i.—Since the probability of endowment state 1 is p and debt is reset to the
regeneration levels d 0(s) after endowment state 1 has occurred, the probability
that the state (s, d 0(s)) occurs is fðs, d0ðsÞÞ 5 pðsÞp, irrespective of the date or
history. Therefore, T periods after such a resetting, the distribution function is

fT ðs, d ðnÞðsÞÞ 5 fðs, d0ðsÞÞð1 2 pÞn for n 5 0, 1, 2, : : : , T 2 1,

with fT ðs, d ðT ÞðsÞÞ 5 pðsÞð1 2 pÞT . Taking the limit as T →∞ gives the invariant
distribution f described in the text.

Part ii.—By proposition 6, Υ 5 logðnmaxÞ. The value of nmax can be found from
the fixed point of the mapping b2(d), which occurs at d 5 d*ð2Þ. From the first-
order condition (12), logðnmaxÞ 5 logðd=bÞ 1 logððsð1Þð1 2 b1ðd*ð2ÞÞÞÞ21 2 1Þ.
Since the participation constraint is binding when d 5 d*ð2Þ and b2ðd*ð2ÞÞ 5
d*ð2Þ, b1ðd*ð2ÞÞ can be found by solving

logð1 2 d*ð2ÞÞ 1 b p log 1 2 sð1Þ 1 sð1Þb1ðd*ð2ÞÞð � 1 ð1 2 pÞ log 1 2 sð2Þ 1 sð2Þd*ð2ÞÞð Þ½ Þ
5 b p log 1 2 sð1Þð Þ 1 ð1 2 pÞ log 1 2 sð2Þð Þ½ � :

Since sð1Þ 5 k 2 εð1 2 pÞ=p and sð2Þ 5 k 1 ε, setting x 5 1 2 sð1Þð1 2
b1ðd*ð2ÞÞÞ and using d*ð2Þ 5 1 2 d=ðsð2Þðb 1 dÞÞ gives the result in the text.
QED
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Data Availability and Replication Files
The code for replicating the figures in this article and the online appen-
dix, together with information about the Luxembourg Income Study
Database, can be found in Lancia, Russo, and Worrall (2024) in the Har-
vard Dataverse, https://doi.org/10.7910/DVN/XDBGVY.
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